首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

2.
经细胞学观察发现,转反义PG基因番茄果实在不同成熟期及存放前后,其果皮外面几层细胞的厚度都比未转基因的厚1~5 μm,细胞结构、细胞质和细胞核等的状态都有明显区别。尤以贮存后更为明显,未转基因果实的果皮细胞结构解体、细胞质凝聚、细胞核变的模糊程度都比转基因的严重。经外源乙烯处理后,转基因和未转基因果实的细胞结构也有相似的变化。结果表明:反义PG基因的转入降低了PG活性,并且减弱了外源乙烯的作用,延缓了果实的衰老,提高了耐贮性能,从而起到果实保鲜作用。  相似文献   

3.
It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.  相似文献   

4.
He ZM  Jiang XL  Qi Y  Luo DQ 《Genetica》2008,133(2):207-214
To assess the utility of the tomato fruit-specific E8 gene's promoter for driving vaccine antigen expression in plant, the 2.2 kb and 1.1 kb E8 promoters were isolated and sequenced from Lycopersicon esculentum cv. Jinfeng #1. The 1.1 kb promoter was fused to vaccine antigen HBsAg M gene for the transfer to Nicotiana tabacum, and the CaMV 35S promoter was used for comparison. Cholera toxin B (ctb) gene under the control of the 1.1 kb promoter was transformed into both N. tabacum and L. esculentum. Southern blot hybridization confirmed the stable integration of the target genes into the tomato and tobacco genomes. ELISA assay showed that the expression product of HBsAg M gene under the control of the 1.1 kb E8 promoter could not be detected in transgenic tobacco tissues such as leaves, flowers, and seeds. In contrast, the expression of HBsAg M gene driven by CaMV 35S promoter could be detected in transgenic tobacco. ELISA assay for CTB proved that the 1.1 kb E8 promoter was able to direct the expression of exotic gene in ripe fruits of transgenic tomato, but expression was absent in leaf, flower, and unripe fruit of tomato, and CTB protein was not detected in transgenic tobacco tissues such as leaves, flowers, and seeds when the gene was under the control of the 1.1 kb E8 promoter. The results indicated that the E8 promoter acted not only in an organ-specific, but also in a species-specific fashion in plant transformation.  相似文献   

5.
6.
Two lipoxygenase (LOX) genes (tomloxA and tomloxB) are expressed in ripening tomato fruit, and tomloxA is also expressed in germinating seedlings [12]. The 5'-upstream regions of these genes were isolated to study the regulatory elements involved in coordinating tomlox gene expression. Sequence analysis of the promoters did not reveal any previously characterized regulatory elements except for TATA and CAAT boxes. However, the sequence motif GATAcAnnAAtnTGATG was found in both promoters. Chimeric gene fusions of each tomlox promoter with the -glucuronidase reporter gene (gus) were introduced into tobacco and tomato plants via Agrobacterium-mediated transformation. GUS activity in tomloxA-gus plants during seed germination peaked at day 5 and was enhanced by methyl jasmonate (MeJa) treatment. No GUS activity was detected in tomloxB-gus seedlings. Neither wounding nor abscisic acid (ABA) treatment of transgenic seedlings modified the activity of either promoter. During fruit development, GUS expression in tomloxA-gus tobacco fruit increased 5 days after anthesis (DAA) and peaked at 20 DAA. In tomloxB-gus tobacco fruit, GUS activity increased at 10 DAA and peaked at 20 DAA. In transgenic tomato fruit, tomloxA-gus expression was localized to the outer pericarp during fruit ripening, while tomloxB-gus expression was localized in the outer pericarp and columella. These data demonstrate that the promoter regions used in these experiments contain cis-acting regulatory elements required for proper regulation of tomlox expression during development and for MeJa-responsiveness.  相似文献   

7.
Expansins are cellular proteins with diverse physiological functions. Expression of fruit-specific expansin gene in tomato is associated with fruit softening — a desirable trait from the processing point of view. In the present study, an expansin gene LeEXP1 was introduced via Agrobacterium tumefaciens in sense orientation under the control of a fruit-specific promoter LeACS4 with nptII gene as selection marker in Indian tomato cv Pusa Uphar. PCR detection and Southern blot analysis confirmed the integration of the transgene in the transformed tomato plants. RT-PCR and northern blot analysis using total RNA isolated from leaves and fruits confirmed over-expression of the LeEXP1 gene in transgenic fruits as compared to the wild type plants. Apart from the visual change in increased red colouration of fruits at different stages of ripening, overexpression of the LeEXP1 gene resulted in enhanced fruit softening, as determined by force required to rupture the fruit pericarp, in the transgenic fruits from breaker stage onwards as compared to the non-transformed wild type fruits. The results thus suggest an improvement in texture of the LeEXP1 over-expressing fruits, which might be useful for tomato processing industry.  相似文献   

8.
K D Kausch  A K Handa 《Plant physiology》1997,113(4):1041-1050
A 94-kD protein that accumulates predominately in tomato (Ly-copersicon esculentum) fruit during ripening was purified, and antibodies specific for the purified protein were used to isolate cDNA clones from a red-ripe fruit cDNA library. A sequence analysis of these cDNAs and cross-reactivity of the 94-kD-specific antibodies to the soybean lipoxygenase (LOX) L-1, L-2, and L-3 proteins and soybean LOX L-1-specific antibodies to the 94-kD protein identified it as a member of the LOX gene family. Maximum levels of the 94-kD LOX mRNA and protein are present in breaker to ripe and red-ripe stages, respectively. Expression of 94-kD LOX in different tissues from mature green and red-ripe tomato fruits was found to be greatest in the radial walls of ripe fruit, but immunocytolocalization using tissue printing suggests that the highest accumulation of its protein occurs in locular jelly. None of 94-kD LOX is expressed in nonripening mutant fruits of any age. Never-ripe mutant fruit accumulate the 94-kD LOX mRNA to levels similar to those obtained in wild-type fruit, but fail to accumulate the 94-kD LOX protein. Collectively, the results show that expression of 94-kD LOX is regulated by the ripening process, and ethylene may play a role in its protein accumulation.  相似文献   

9.
Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the β-carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype—Pusa Rohini. We found that expression of phytoene synthase and β-carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.  相似文献   

10.
Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit‐ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild‐type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation‐related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd‐mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35SySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole‐plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post‐harvest senescence and decay.  相似文献   

11.
The molecular mass of 1-aminocyclopropane-1-carboxylate (ACC)synthase from a variety of sources was examined by both high-performancegel-filtration chromatography and polyacryl-amide gel electrophoresisin the presence of sodium dodecylsulfate. Enzymes used wereprepared from wounded or non-wounded pericarp of ripe tomatofruits and wounded mesocarp of winter squash fruits, as wellas from cells of E. coli that had been transformed with cDNAsfor the wound-induced or ripening-induced ACC synthases of tomatoand the wound-induced or auxininduced enzymes from winter squash.The enzymes from tomato fruit tissues were isolated in a monomericform, whereas the enzymes synthesized in E. coli from cDNAsfor tomato ACC synthase were isolated in a dimeric form. ACCsynthases of winter squash obtained either from fruit tissuesor from transformed E. coli cells were isolated in dimeric forms.ACC synthase in the monomeric form was less sensitive to theinactivation that is associated with the catalytic reaction(the mechanism-based inactivation) than the enzyme in the dimericform. A plausible mechanism relating the difference in molecularform to sensitivity to the mechanism-based inactivation of tomatoACC synthase is discussed. (Received February 1, 1993; Accepted May 17, 1993)  相似文献   

12.
13.
We investigated the effect of water stress on yield and quality of tomato plants overexpressing Solanum lycopersicum thylakoid-bound ascorbate peroxidase gene (StAPX). APX activity, hydrogen peroxide content, net photosynthetic rate of tomato leaves, and yield and nutrition quality of tomato fruits were measured under soil moisture 70, 60, and 50 % of full field capacity. Results show that the capability of APX for scavenging hydrogen peroxide induced by water stress was higher in the transgenic than the wild type (WT) plants. The yield of fruits of the transgenic tomato plants was higher than that of WT plants under water stress and the fruit nutrition quality was not different. These results indicate that overexpression of StAPX might improve water stress tolerance in the transgenic tomato plants.  相似文献   

14.

Key message

The E8 promoter–HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit.

Abstract

Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8–MIR–HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30–630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8–MIR–HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113–124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.  相似文献   

15.
A tobacco peroxidase gene tpoxN1 was reported to be expressed within 1 h after wounding in leaves [Hiraga et al. (2000a) Plant Cell Physiol. 41: 165]. We describe here further results on the wound-induced tpoxN1 expression. The quick tpoxN1 induction occurred preferentially in stems and petioles, but was negligible in leaf blades even 8 h after wounding. Induced GUS activity was also detected rapidly after wounding in the stem of transgenic tobacco plants carrying the tpoxN1 promoter::GUS fusion gene, localized mainly in the vascular systems where it was maintained this level for 14 d or more. Strong GUS activity was also found in the petiole and veinlet as well as the epidermal tissue in the stem. Treatment of known inducers for wound-responsive genes such as jasmonate, 1-aminocyclopropane-1-carboxylate, spermine, phytohormones and other stress treatments did not enhance wound-induced tpoxN1 gene expression in stems at all, but rather repressed it in some cases. Studies using metabolic inhibitors suggested that phosphorylation and dephosphorylation of proteins together with de novo protein synthesis are likely to be involved in the wound-induced tpoxN1 expression as well as some other wound-responsive genes. Thus, tpoxN1 is a unique wound-inducible and possible wound-healing gene which is rapidly expressed being maintained for a long time in veins via an unknown wound-signaling pathway(s).  相似文献   

16.
17.
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development.  相似文献   

18.
Plastids contain an NADH dehydrogenase complex (Ndh complex) homologous to the mitochondrial complex I (EC 1.6.5.3). In this work, we have analysed the changes in the Ndh complex during ripening of pepper (Capsicum annum L., cv. Maor) and tomato (Lycopersicon esculentum Mill., cv. Marglobe) fruits. The Ndh complex was mainly present in the outer pericarp of tomato fruits, whereas it was evenly distributed in the pericarp of pepper. In both kinds of fruit we observed a decrease in the total amount of Ndh complex from the green to the red stage of development. This decrease corresponds to parallel decreases in the content and activity of the complex in plastids during the transition from chloroplasts to chromoplasts. Levels of plastidial quinol peroxidase activity were also higher during the first stages of tomato fruit development than during the latter stages of ripening. However, when referred to total plastid protein, the amount and activity of the Ndh complex in chloroplasts isolated from green fruits was higher than in chloroplasts isolated from leaves. These results strongly suggest that function of the Ndh complex, probably related to a plastidial electron transport chain, can be important during the first stages of fruit development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号