首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expanding use of DNA barcoding as a tool to identify species and assess biodiversity has recently attracted much attention. An attractive aspect of a barcoding method to identify scleractinian species is that it can be utilized on any life stage (larva, juvenile or adult) and is not influenced by phenotypic plasticity unlike morphological methods of species identification. It has been unclear whether the standard DNA barcoding system, based on cytochrome c oxidase subunit 1 (COI), is suitable for species identification of scleractinian corals. Levels of intra- and interspecific genetic variation of the scleractinian COI gene were investigated to determine whether threshold values could be implemented to discriminate conspecifics from other taxa. Overlap between intraspecific variation and interspecific divergence due to low genetic divergence among species (0% in many cases), rather than high levels of intraspecific variation, resulted in the inability to establish appropriate threshold values specific for scleractinians; thus, it was impossible to discern most scleractinian species using this gene.  相似文献   

2.
Parasitoid wasps have received a great deal of attention in the biological control of melon-cotton aphid (Aphis gossypii Glover). The species of parasitoids are often difficult to identify because of their small body size and profound diversity. DNA barcoding offers scientists who are not expert taxonomists a powerful tool to render their field studies more accurate. Using DNA barcodes to identify aphid parasitoid wasps in specific cropping systems may provide valuable information for biological control. Here, we report the use of DNA barcoding to confirm the morphological identification of 14 species (belonging to 13 genera of 7 families) of parasitoid wasps from two-year field samples in a watermelon cropping system. We generated DNA sequences from the mitochondrial COI gene and the nuclear D2 region of 28S rDNA to assess the genetic variation within and between parasitoid species. Automatic Barcode Gap Discovery (ABGD) supported the presence of 14 genetically distinct groups in the dataset. Among the COI sequences, we found no overlap between the maximum K2P distance within species (0.49%) and minimum distance between species (6.85%). The 28S sequences also showed greater interspecific distance than intraspecific distance. DNA barcoding confirmed the morphological identification. However, inconsistency and ambiguity of taxonomic information available in the online databases has limited the successful use of DNA barcoding. Only five species matched those in the BOLD and GenBank. Four species did not match the entries in GenBank and five species showed ambiguous results in BOLD due to confusing nomenclature. We suggested that species identification based on DNA barcodes should be performed using both COI and other genes. Nonetheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to provide a foundation for studies aimed at improving the understanding of the biocontrol services provided by parasitoids in the melon ecosystem.  相似文献   

3.
DNA sequence data enable not only the inference of phylogenetic relationships but also provide an efficient method for species-level identifications under the terms DNA barcoding or DNA taxonomy. In this study, we have sequenced partial sequences of mitochondrial COI and 16S rRNA genes from 63 specimens of 8 species of Pectinidae to assess whether DNA barcodes can efficiently distinguish these species. Sequences from homologous regions of four other species of this family were gathered from GenBank. Comparisons of within and between species levels of sequence divergence showed that genetic variation between species exceeds variation within species. When using neighbour-joining clustering based on COI and 16S genes, all species fell into reciprocally monophyletic clades with high bootstrap values. These evidenced that these scallop species can be efficiently identified by DNA barcoding. Evolutionary relationships of Pectinidae were also examined using the two mitochondrial genes. The results are almost consistent with Waller’s classification, which was proposed on the basis of shell microstructure and the morphological characteristics of juveniles.  相似文献   

4.
【目的】离腹寡毛实蝇属Bactrocera昆虫是最具经济重要性的实蝇类害虫,本研究依据mtDNA COI基因碱基序列对离腹寡毛实蝇属常见实蝇种类进行识别鉴定与系统发育分析。【方法】以口岸经常截获的离腹寡毛实蝇属8个亚属21种实蝇为对象,采用DNA条形码技术,通过对mtDNA COI基因片段 (约650 bp)的测序和比对,以MEGA软件的K2-P双参数模型计算种内及种间遗传距离,以邻接法(NJ) 构建系统发育树。【结果】聚类分析与形态学鉴定结果一致,除11种单一序列实蝇外,其他10种实蝇均各自形成一个单系,节点支持率为99%以上。种内(10种)遗传距离为0.0003~0.0068,平均为0.0043;种间(21种)遗传距离为0.0154~0.2395,平均为0.1540;种间遗传距离为种内遗传距离的35.8倍,而且种内、种间遗传距离没有重叠区域。【结论】基于mtDNA COI基因的DNA条形码技术可以用于离腹寡毛实蝇属昆虫的快速鉴定识别,该技术体系的建立对实蝇类害虫的检测监测具有重要意义。  相似文献   

5.
Identification of adult fruit flies primarily involves microscopic examination of diagnostic morphological characters, while immature stages, such as larvae, can be more problematic. One of the Australia’s most serious horticultural pests, the Queensland Fruit Fly (Bactrocera tryoni: Tephritidae), is of particular biosecurity/quarantine concern as the immature life stages occur within food produce and can be difficult to identify using morphological characteristics. DNA barcoding of the mitochondrial Cytochrome Oxidase I (COI) gene could be employed to increase the accuracy of fruit fly species identifications. In our study, we tested the utility of standard DNA barcoding techniques and found them to be problematic for Queensland Fruit Flies, which (i) possess a nuclear copy (a numt pseudogene) of the barcoding region of COI that can be co‐amplified; and (ii) as in previous COI phylogenetic analyses closely related B. tryoni complex species appear polyphyletic. We found that the presence of a large deletion in the numt copy of COI allowed an alternative primer to be designed to only amplify the mitochondrial COI locus in tephritid fruit flies. Comparisons of alternative commonly utilized mitochondrial genes, Cytochrome Oxidase II and Cytochrome b, revealed a similar level of variation to COI; however, COI is the most informative for DNA barcoding, given the large number of sequences from other tephritid fruit fly species available for comparison. Adopting DNA barcoding for the identification of problematic fly specimens provides a powerful tool to distinguish serious quarantine fruit fly pests (Tephritidae) from endemic fly species of lesser concern.  相似文献   

6.
Aphis glycines Matsumura is an important pest of soybean in Asia and North America. Hymenoptera parasitoids play a key role in the control of the soybean aphid. The correct identification of parasitoids is a critical step that precedes the assessment of their potential biological control agents. Accurate identification of the majority of the species attacking the soybean aphid often requires elaborate specimen preparation and expert taxonomic knowledge. In this study, we facilitated the identification of soybean aphid parasitoids by applying a DNA barcoding approach following a preliminary morphological identification. We generated DNA sequence data from the mitochondrial COI gene and the D2 region of 28S rDNA to assess the genetic variation within and between parasitoid species emerging from the soybean aphid in China. Fifteen Hymenoptera parasitoid species belonging to 10 genera of five families were identified with little intra‐specific variation (0.09% ± 0.06% for 28S and 0.36% ± 0.18% for COI) and large inter‐specific divergence (30.46% ± 3.42% for 28S and 20.4% ± 1.20% for COI).  相似文献   

7.
Summary. The genus Calliptamus contains swarming orthopterans that cause serious damage in Algerian agricultural systems. However, it remains difficult to identify species within this genus; a thorough understanding of the group’s systematics and the utilization of novel taxonomic criteria are needed. We used morphological analysis along with two other methods of species identification – chemotaxonomy with cuticular compounds and DNA barcoding involving the COI gene – to classify 81 individual grasshoppers collected at two different sites in the Sétif region (northeastern Algeria). The chemotaxonomic analyses yielded ambiguous results, but DNA barcoding allowed us to differentiate two Calliptamus species found in Algeria: Calliptamus barbarus (Costa 1836), and Calliptamus wattenwylianus (Pantel 1896). Several morphological criteria used in identification keys appear to reflect differences among morphotypes rather than differences between species, and their taxonomic specificity is not supported by the barcoding data. The number of spines on the hind tibia is the only morphological criterion that reflected genetic differences between species; it is thus considered to be a taxonomically useful feature for identifying species in this genus.  相似文献   

8.
为弥补传统形态分类方法的不足,探究应用DNA条形码技术进行分子生物学鉴定的可行性,本研究用DNA条形码技术检测了青海省海东地区3目6科14属18种110只小型兽类的COI基因部分序列。分析所测COI基因序列可知:种内遗传距离≤3%,种间遗传距离5-10%,属间遗传距离12-19%,种间遗传距离显著大于种内遗传距离。NJ树显示同种个体聚为有很高支持度的单一分支。有6个个体(4只黄胸鼠、2只小家鼠)在现场鉴定中被误定为其他种类。研究结果表明使用条形码技术能纠正形态学鉴定中的错误,也说明动物线粒体COI基因是一个有效的DNA条形码标准基因。  相似文献   

9.
尤欢  周力兵  邓裕亮  陈国华 《昆虫学报》2014,57(11):1343-1350
【目的】果实蝇属Bactrocera中有国际上重要的检疫性害虫, 基于形态的物种鉴定有一定的局限性。另一方面, 云南边境地区为东南亚地区实蝇入侵我国的重要通道。因此, 对该地区实蝇分子鉴定方法的研究对于该属物种的快速准确鉴定具有重要意义。本研究旨在探讨DNA条形码技术在果实蝇属物种鉴定中的有效性。【方法】使用线粒体基因COI和COII序列的通用引物对果实蝇属20个物种60份样品进行PCR扩增、测序和序列分析; 采取距离方法和建树方法评价2种序列的鉴别能力。【结果】COI和COII序列平均长度分别为682 bp和339 bp, 种内和种间遗传差异较大, 有较明显的遗传距离间隔(barcoding gap), 鉴定成功率分别为91.2%和90.7%。另外, 分子系统树表明华实蝇亚属Sinodacus不是单系群。【结论】COI和COII序列均能够将绝大多数果实蝇属物种进行准确鉴别, 应用COI或COII序列进行果实蝇属物种鉴定具有一定的可行性。  相似文献   

10.
The 5' region of the mitochondrial DNA (mtDNA) gene cytochrome c oxidase I (COI) is the standard marker for DNA barcoding. However, because COI tends to be highly variable in amphibians, sequencing is often challenging. Consequently, another mtDNA gene, 16S rRNA gene, is often advocated for amphibian barcoding. Herein, we directly compare the usefulness of COI and 16S in discriminating species of hynobiid salamanders using 130 individuals. Species identification and classification of these animals, which are endemic to Asia, are often based on morphology only. Analysis of Kimura 2-parameter genetic distances (K2P) documents the mean intraspecific variation for COI and 16S rRNA genes to be 1.4% and 0.3%, respectively. Whereas COI can always identify species, sometimes 16S cannot. Intra- and interspecific genetic divergences occasionally overlap in both markers, thus reducing the value of a barcoding gap to identify genera. Regardless, COI is the better DNA barcoding marker for hynobiids. In addition to the comparison of two potential markers, high levels of intraspecific divergence in COI (>5%) suggest that both Onychodactylus fischeri and Salamandrella keyserlingii might be composites of cryptic species.  相似文献   

11.
The standardized use of mitochondrial cytochrome c oxidase subunit I (COI) gene sequences as DNA barcodes has been widely promoted as a high-throughput method for species identification and discovery. Species delimitation has been based on the following criteria: (1) monophyletic association and less frequently (2) a minimum 10× greater divergence between than within species. Divergence estimates, however, can be inflated if sister species pairs are not included and the geographic extent of variation within any given taxon is not sampled comprehensively. This paper addresses both potential biases in DNA divergence estimation by sampling range-wide variation in several morphologically distinct, endemic butterfly species in the genus Heteropsis, some of which are sister taxa. We also explored the extent to which mitochondrial DNA from the barcode region can be used to assess the effects of historical rainforest fragmentation by comparing genetic variation across Heteropsis populations with an unrelated forest-associated taxon Saribia tepahi. Unexpectedly, generalized primers led to the inadvertent amplification of the endosymbiont Wolbachia, undermining the use of universal primers and necessitating the design of genus-specific COI primers alongside a Wolbachia-specific PCR assay. Regardless of the high intra-specific genetic variation observed, most species satisfy DNA barcoding criteria and can be differentiated in the nuclear phylogeny. Nevertheless, two morphologically distinguishable candidate species fail to satisfy the barcoding 10× genetic distance criterion, underlining the difficulties of applying a standard distance threshold to species delimitation. Phylogeographic analysis of COI data suggests that forest fragmentation may have played an important role in the recent evolutionary diversification of these butterflies. Further work on other Malagasy taxa using both mitochondrial and nuclear data will provide better insight into the role of historical habitat fragmentation in species diversification and may potentially contribute to the identification of priority areas for conservation.  相似文献   

12.
Several recent studies have proposed that partial DNA sequences of the cytochrome c oxidase I (COI) mitochondrial gene might serve as DNA barcodes for identifying and differentiating between animal species, such as birds, fish and insects. In this study, we tested the effectiveness of a COI barcode to identify true bugs from 139 species collected from Korea and adjacent regions (Japan, Northeastern China and Fareast Russia). All the species had a unique COI barcode sequence except for the genus Apolygus (Miridae), and the average interspecific genetic distance between closely related species was about 16 times higher than the average intraspecific genetic distance. DNA barcoding identified one probable new species of true bug and revealed identical or very recently divergent species that were clearly distinguished by morphological characteristics. Therefore, our results suggest that COI barcodes can reveal new cryptic true bug species and are able to contribute for the exact identification of the true bugs.  相似文献   

13.
DNA barcoding has greatly accelerated the pace of specimen identification to the species level, as well as species delineation. Whereas the application of DNA barcoding to the matching of unknown specimens to known species is straightforward, its use for species delimitation is more controversial, as species discovery hinges critically on present levels of haplotype diversity, as well as patterning of standing genetic variation that exists within and between species. Typical sample sizes for molecular biodiversity assessment using DNA barcodes range from 5 to 10 individuals per species. However, required levels that are necessary to fully gauge haplotype variation at the species level are presumed to be strongly taxon‐specific. Importantly, little attention has been paid to determining appropriate specimen sample sizes that are necessary to reveal the majority of intraspecific haplotype variation within any one species. In this paper, we present a brief outline of the current literature and methods on intraspecific sample size estimation for the assessment of COI DNA barcode haplotype sampling completeness. The importance of adequate sample sizes for studies of molecular biodiversity is stressed, with application to a variety of metazoan taxa, through reviewing foundational statistical and population genetic models, with specific application to ray‐finned fishes (Chordata: Actinopterygii). Finally, promising avenues for further research in this area are highlighted.  相似文献   

14.
The genus Anicetus includes economically important biocontrol agents that are introduced for control of soft and wax scale insect agricultural pests (Ceroplastes spp.). Understanding of host–parasitoid associations is critical to the successful outcome of their utilization in biological control projects. However, identification of these parasitoids is often difficult because of their small size and generally similar morphological features, and hence, studies on the host–parasitoid associations. Here, nucleotide sequence data were generated from the mitochondrial COI gene and the D2 region of 28S rRNA to assess genetic variation within and between species of Anicetus occurring in China. The results of this study support the use of the COI and the D2 region of 28S rRNA gene as useful markers in separating species of Anicetus, even in cases where morphological differences are subtle. On the other hand, the COI gene is also useful in recognizing species with much variation in morphology. DNA barcoding reveals high levels of host specificity of endoparasitoids wasps in the genus Anicetus. Our results indicate that each Anicetus species is adapted to a limited set of host species, or even are monospecific in their host choice.  相似文献   

15.
Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.  相似文献   

16.
为提高物种鉴定的准确性, 本研究采用DNA条形码技术对大亚湾生态监控区冬季采集的贝类样品进行了种类鉴定。结果表明, 26个形态种中, 有15个可以通过线粒体COI和16S rRNA基因的系统发育分析鉴定到种的水平。部分形态上难以鉴定的种类, 如线缝摺塔螺(Ptychobela suturalis)和区系螺(Funa sp.)可以通过条形码实现有效鉴定。锯齿巴非蛤(Paphia gallus)、西格织纹螺(Nassarius siquijorensis)、爪哇拟塔螺(Turricula javana)等种类存在相当大的种内遗传距离, 有存在隐存种的可能性。尽管基于线粒体COI和16S rRNA基因的种内遗传距离和属内种间的遗传距离发生重合, 无明显的条形码间隙, 但通过系统树的方法仍能有效鉴定物种。可见, DNA条形码技术能有效提高海洋贝类物种鉴定的准确性并发现隐存种。  相似文献   

17.
DNA barcoding was used to identify crab larvae from the Marine Biological Reserve of Arvoredo, encompassing a coastal archipelago off the SW Atlantic coast (27°S, 48°W). Partial mitochondrial COI or 16S rRNA gene sequences were obtained for 488 larvae, leading to the identification of 20 species. The COI sequences generated 13 barcode index numbers (BINs) within Barcode of Life Data Systems (BOLD), among which 11 were concordant with single species. DNA from ~ 6% of the larvae did not amplify using the primers tested; based on external morphological characteristics, these larvae represented four possible additional operational taxonomic units (OTUs) at the family level. Intraspecific variation for the COI and 16S rRNA genes was found to be < 2.6% and < 2.1% respectively (Kimura 2-parameter distance), whereas interspecific divergence ranged from 7.9% to 21.5% and 6.4% to 14.5%, respectively. These results imply that both genes are suitable for use in species identification of brachyuran crabs of this area. Molecular identification of this group successfully enabled the diagnosis of larvae of closely related species, including congeners in Mithrax, Achelous and Callinectes. In addition, eight out of 20 species recognized represent new records for the reserve suggesting that the brachyuran fauna in the area has been underestimated based on traditional biodiversity measures. The availability of primers suited to the targeted species, and the development of a taxonomically comprehensive DNA barcoding database are the major recommendations to improve the accuracy and feasibility of using DNA barcoding for species identification of SW Atlantic brachyuran crabs.  相似文献   

18.
Identification of the juveniles of economically important thrips species on imports by morphology alone can be challenging and culturing is usually required. In the case of EU quarantine species such as Thrips palmi, rapid and accurate identification is essential. DNA barcoding using the Cytochrome oxidase I (COI) gene has become a popular technique for species identification; however, in some invertebrate genera COI has been shown to provide insufficient variability for species discrimination. This study presents a comparison of five different loci to investigate their ability to discriminate a small number of Thrips species. All five loci discriminated the species by neighbour-joining tree and varying degrees of discrimination were determined upon further investigation of the intraspecific and interspecific distances. Two distinct COI clades were observed for T. Palmi and judged to be COI haplotypes when data from the other four additional loci and geographical collection data were taken into consideration. COI was shown to provide sufficient variation to be used in future DNA barcoding efforts within the genus Thrips.  相似文献   

19.
The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was <0.5%, with most species exhibiting no variation in any of the three gene regions. Interspecific divergence was also low: 18.5% of congeneric morphospecies shared identical COI barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy.  相似文献   

20.
The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号