首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
植物进化发育生物学的形成与研究进展   总被引:2,自引:0,他引:2  
植物进化发育生物学是最近十几年来才兴起的一门学科, 它是进化发育生物学的主要分支之一。进化发育生物学的产生经历了进化生物学与胚胎学、遗传学和发育生物学的三次大的综合, 其历史可追溯到19世纪初冯.贝尔所创立的比较胚胎学。相关研究曾沉寂了近一个世纪, 直到20世纪80年代早期, 动物中homeobox基因被发现, 90年代初花发育的 ABC模型被提出, 加之对发育相关基因研究的不断深入, 才使基因型与表型联系了起来, 进而促进了进化发育生物学的飞速发展。目前进化发育生物学已成为21世纪生命科学领域的研究热点之一。本文详细阐述了进化发育生物学产生和发展的历程, 综述了最近十几年来植物进化发育生物学的主要研究进展。文中重点介绍了与植物发育密切相关的MADS-box基因在植物各大类群中的研究现状, 讨论了植物进化发育生物学领域的研究成果对花被演化、花对称性以及叶的进化等重要问题的启示。  相似文献   

2.
进化发育生物学的一个重要任务就是揭示形态多样性的分子基础, 该领域的研究包含形态、形态发育相关基因和形态所属类群等三个要素。花/花序是进化发育生物学研究的首要对象, 系统发育重建和个体发育剖析的结合将促进认知花的形态进化。发育相关基因的进化表现为等位基因遗传或表观遗传的突变, 基因家族生与死的进化, 不同基因组拥有独特的基因。运用形态学或序列分析方法很大程度揭示了禾本科植物花进化过程中的基因进化。试从学科问题、思路方法以及具体例子介绍植物进化发育生物学。  相似文献   

3.
进化发育生物学的一个重要任务就是揭示形态多样性的分子基础,该领域的研究包含形态、形态发育相关基因和形态所属类群等三个要素。花/花序是进化发育生物学研究的首要对象,系统发育重建和个体发育剖析的结合将促进认知花的形态进化。发育相关基因的进化表现为等位基因遗传或表观遗传的突变,基因家族生与死的进化,不同基因组拥有独特的基因。运用形态学或序列分析方法很大程度揭示了禾本科植物花进化过程中的基因进化。试从学科问题、思路方法以及具体例子介绍植物进化发育生物学。  相似文献   

4.
兰科植物是开花植物中最大的家族之一,其花高度进化,具有花瓣状的萼片,特化的唇瓣和雌雄蕊合生的蕊柱,是单子叶植物花发育生物学研究的理想材料。近年来有关兰花花发育基因调控的研究已取得了一些进展,本文从兰花开花转换和兰花花器官的形成两方面综述了近年来国内外关于兰花花发育分子机理方面的研究进展,主要介绍了文心兰、蝴蝶兰和石斛兰的花发育相关基因,并推测了兰花花被的进化发育过程,认为兰花的DEFICIENS(DEF)类基因在早期经过两轮复制,形成了四类DEF基因,从而促进了花萼与花瓣的分离、侧瓣与唇瓣的分离。该文最后对今后兰花花发育研究的发展方向进行了展望。  相似文献   

5.
50年代以来由于分子生物学等有关学科的迅速发展,植物胚胎学正在由实验胚胎学,进一步发展成为植物细胞生物学、生物化学及分子遗传学等学科相结合的植物胚胎发育生物学。发育受遗传所控制,遗传特点又要通过发育展现出来,胚胎发育的每个阶段也都显示着遗传特点。胚胎学与遗传学研究关系密切。植物胚胎发育生物学的范畴广义地说包含着花的形成,雌雄配子体的发生,配子的形成,受精与亲和性,以及果实,种子等孢子体形成过程中结构与功能的关系,形态建成的生理与分子基础,以及遗传信息展现的时、空顺序等生殖发育的多个方面。  相似文献   

6.
左泽远  刘琬琳  许杰 《植物学报》2020,55(2):147-162
在植物基因组中, 除了同源基因成簇现象外, 近年来还发现一些具有共表达特性的异源基因也能够以基因簇形式存在, 但这些异源基因簇的进化和生物学功能尚不清楚。花药发育和花粉形成是植物进化出的特有的生殖生物学过程, 同时产生了一些在花药绒毡层中特异表达和特定功能的基因簇基因。该研究通过筛选和分析花药绒毡层中基因簇基因的分子特性、表达调控、基因年龄和基因重复进化等信息, 探讨花药基因簇基因与植物开花功能进化之间的关系。结果表明, 在拟南芥(Arabidopsis thaliana)中共筛选到84个(13个基因簇)花药绒毡层特异高表达的基因簇基因, 它们主要产生于串联重复事件, 76%的基因出现在开花植物分化后的阶段, 主要参与生殖发育、花粉鞘组成和脂代谢等生物学过程。研究初步解析了拟南芥花药绒毡层中基因簇基因的基本特征、生物学功能和基因进化机制, 为深入揭示植物基因簇基因的遗传学功能奠定了基础。  相似文献   

7.
在植物基因组中,除了同源基因成簇现象外,近年来还发现一些具有共表达特性的异源基因也能够以基因簇形式存在,但这些异源基因簇的进化和生物学功能尚不清楚。花药发育和花粉形成是植物进化出的特有的生殖生物学过程,同时产生了一些在花药绒毡层中特异表达和特定功能的基因簇基因。该研究通过筛选和分析花药绒毡层中基因簇基因的分子特性、表达调控、基因年龄和基因重复进化等信息,探讨花药基因簇基因与植物开花功能进化之间的关系。结果表明,在拟南芥(Arabidopsisthaliana)中共筛选到84个(13个基因簇)花药绒毡层特异高表达的基因簇基因,它们主要产生于串联重复事件,76%的基因出现在开花植物分化后的阶段,主要参与生殖发育、花粉鞘组成和脂代谢等生物学过程。研究初步解析了拟南芥花药绒毡层中基因簇基因的基本特征、生物学功能和基因进化机制,为深入揭示植物基因簇基因的遗传学功能奠定了基础。  相似文献   

8.
作者通过对颈卵器植物MADS_box基因最新研究结果的概述,介绍了MADS_box基因与颈卵器植物生殖器官决定、发育和进化的关系以及被子植物花器官发育的ABCD模型在三类颈卵器植物中的表现形式和进化关系。这些结果表明MADS_box基因的结构、功能和表达模式的变化是植物生殖器官决定、发育和进化的主要原因。  相似文献   

9.
颈卵器植物MADS-box基因的研究进展   总被引:4,自引:2,他引:2  
作者通过对颈卵器植物MADS_box基因最新研究结果的概述 ,介绍了MADS_box基因与颈卵器植物生殖器官决定、发育和进化的关系以及被子植物花器官发育的ABCD模型在三类颈卵器植物中的表现形式和进化关系。这些结果表明MADS_box基因的结构、功能和表达模式的变化是植物生殖器官决定、发育和进化的主要原因。  相似文献   

10.
花对称性的研究进展   总被引:1,自引:0,他引:1  
花对称性(floral symmetry)是被子植物花部结构的典型特性之一,主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称,而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新,被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段,随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明,在传粉过程的不同阶段,花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花,两侧对称的花提高了特异性传粉者的选择作用,增加了花粉落置的精确性,进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明,CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源,与其他花部构成之间是否协同作用,一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。  相似文献   

11.
Alexander Kowalevsky was one of the most significant 19th century biologists working at the intersection of evolution and embryology. The reinstatement of the Alexander Kowalevsky Medal by the St. Petersburg Society of Naturalists for outstanding contributions to understanding evolutionary relationships in the animal kingdom, evolutionary developmental biology, and comparative zoology is timely now that Evo-devo has emerged as a major research discipline in contemporary biology. Consideration of the intellectual lineage of comparative evolutionary embryology explicitly forces a reconsideration of some current conceptions of the modern emergence of Evo-devo, which has tended to exist in the shadow of experimental embryology throughout the 20th century, especially with respect to the recent success of developmental biology and developmental genetics. In particular we advocate a sharper distinction between the heritage of problems and the heritage of tools for contemporary Evo-devo. We provide brief overviews of the work of N. J. Berrill and D. T. Anderson to illustrate comparative evolutionary embryology in the 20th century, which provides an appropriate contextualization for a conceptual review of our research on the sea urchin genus Heliocidaris over the past two decades. We conclude that keeping research questions rather than experimental capabilities at the forefront of Evo-devo may be an antidote to any repeat of the stagnation experienced by the first group of evolutionary developmental biologists over one hundred years ago and acknowledges Kowalevsky's legacy in evolutionary embryology.  相似文献   

12.
During the early part of the 20th century most embryologists were skeptical about the significance of Mendelian genetics to embryological development. A few embryologists began to study the developmental effects of Mendelian genes around 1940. Such work was a necessary step on the path to modern developmental biology. It occurred during the time when the Evolutionary Synthesis was integrating Mendelian and population genetics into a unified evolutionary theory. Why did the first embryological geneticists begin their study at that particular time? One possible explanation is that developmental genetics was a potential avenue of alliance between embryology and evolutionary biology, two fields that had been separated since the 1890s. To assess this possible motive it is necessary to explore the methodological contrasts that obtained between embryology and both Mendelian-chromosomal genetics and neo-Darwinian evolutionary theory. Some of these contrasts persist to the present day.  相似文献   

13.
Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin''s notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll''s phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space?  相似文献   

14.
The limited value most French biologists attributed to Darwinism and Mendelism in the first half of the twentieth century, and their conviction that these theories were at best insufficient to explain evolution and development, probably created conditions propitious to the development of Evo-devo at the end of the century. The separation between embryology and evolution did not exist in French biology as it did in American genetics: explanations for these two phenomena were sought equally in the “organization” of the egg. The major contribution of French biologists to Evo-devo was clearly the invention of the notion of the regulatory gene by Jacob and Monod; not the operon model per se, but the introduction of a hierarchy between two different kinds of genes. The consequence, the rise of the developmental gene concept, was not immediate, and required the active role of other biologists such as Antonio Garcia-Bellido, Allan Wilson and Stephen Jay Gould. Various obstacles had to be overcome for this concept of developmental gene to be fully accepted.  相似文献   

15.
16.
The approach I have elected in this retrospective of how I became a student of evo-devo is both biographical and historical, a case study along the lines of Waddington's The Evolution of an Evolutionist ('75), although in my case it is the Evolution of an Evo-devoist. What were the major events that brought me to developmental biology and from there to evo-devo? They were, of course, specific to my generation, to the state of knowledge at the time, and to my own particular circumstances. Although exposed to evolution and embryology as an undergraduate in the 1960s, my PhD and post-PhD research programme lay within developmental biology until the early 1970s. An important formative influence on my studies as an undergraduate was the work of Conrad Hal Waddington (1905-1975), whose writings made me aware of genetic assimilation and gave me an epigenetic approach to my developmental studies. The switch to evo-devo (and my discovery of the existence of the neural crest), I owe to an ASZ (now SICB) symposium held in 1973.  相似文献   

17.
Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.  相似文献   

18.
The early studies of evolutionary developmental biology (Evo-Devo) come from several sources. Tributaries flowing into Evo-Devo came from such disciplines as embryology, developmental genetics, evolutionary biology, ecology, paleontology, systematics, medical embryology and mathematical modeling. This essay will trace one of the major pathways, that from evolutionary embryology to Evo-Devo and it will show the interactions of this pathway with two other sources of Evo-Devo: ecological developmental biology and medical developmental biology. Together, these three fields are forming a more inclusive evolutionary developmental biology that is revitalizing and providing answers to old and important questions involving the formation of biodiversity on Earth. The phenotype of Evo-Devo is limited by internal constraints on what could be known given the methods and equipment of the time and it has been framed by external factors that include both academic and global politics.  相似文献   

19.
Many scientists and philosophers of science are troubled by the relative isolation of developmental from evolutionary biology. Reconciling the science of development with the science of heredity preoccupied a minority of biologists for much of the twentieth century, but these efforts were not corporately successful. Mainly in the past fifteen years, however, these previously dispersed integrating programmes have been themselves synthesized and so reinvigorated. Two of these more recent synthesizing endeavours are evolutionary developmental biology (EDB, or "evo-devo") and developmental systems theory (DST). While the former is a bourgeoning and scientifically well-respected biological discipline, the same cannot be said of DST, which is virtually unknown among biologists. In this review, we provide overviews of DST and EDB, summarize their key tenets, examine how they relate to one another and to the study of epigenetics, and survey the impact that DST and EDB have had (and in future should have) on biological theory and practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号