首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 703 毫秒
1.
Our object was to characterize the morphological changes occurring in pre- and postsynaptic elements during their initial contact and subsequent maturation into typical synaptic profiles. Neurons from superior cervical ganglia (SCG) of perinatal rats were freed of their supporting cells and established as isolated cells in culture. To these were added explants of embryonic rat thoracic spinal cord to allow interaction between outgrowing cord neurites and the isolated autonomic neurons. Time of initial contact was assessed by light microscopy; at timed intervals thereafter, cultures were fixed for electron microscopy. Upon contact, growth cone filopodia became extensively applied to the SCG neuronal plasmalemma and manifested numerous punctate regions in which the apposing plasma membranes were separated by only 7-10 nm. The Golgi apparatus of the target neuron hypertrophied, and its production of coated vesicles increased. Similar vesicles were seen in continuity with the SCG plasmalemma near the close contact site; their apparent contribution of a region of postsynaptic membrane with undercoating was considered to be the first definitive sign of synapse formation. Tracer work with peroxidase and ferritin confirmed that the traffic of coated vesicles within the neuronal soma is largely from Golgi region to somal surface. Subsequent to the appearance of postsynaptic density, the form and content of the growth cone was altered by the loss of filopodia and the appearance of synaptic vesicles which gradually became clustered opposite the postsynaptic density. As the synapse matured, synaptic vesicles increased in number, cleft width and content increased, presynaptic density appeared, branched membranous reticulum became greatly diminished, and most lysosomal structures disappeared. Coated vesicles continued to be associated with the postsynaptic membrane at all stages of maturation. The incorporation of Golgi-derived vesicles into discrete regions of the cell membrane could provide the mechanism for confining specific characteristics of the neuronal membrane to the synaptic region.  相似文献   

2.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

3.
The precise cellular and subcellular locations of coated vesicle protein, clathrin, in rat kidney and cerebellum have been visualized by immunocytochemical techniques. In the renal tubular epithelia, clathrin-positive products were found on both free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No clathrin was observed in the cisternae of RER or the Golgi apparatus. Clathrin-positive reaction products could also be seen on coated pits, coated vesicles, Golgi-associated vesicles, basolateral cell membrane, the ground substance, and in the autophagic vacuoles. In cerebellar Purkinje and granule cell bodies, reaction products were seen localized on coated vesicles, on the budding areas from the Golgi-associated membrane and Golgi-associated vesicles. Furthermore, the membrane of the multivesicular body, the bound-ribosomes, and the ground substance were also stained. In the myelinated axon, the clathrin appeared to be concentrated on certain segments and seemed to fill in the space between neurotubules and some vesicles. In certain synaptic terminals clathrin was often seen attached to presynaptic vesicles, presynaptic membrane, and post-synaptic membrane. However, in most mossy fibers, some synaptic vesicles were not stained. These observations suggest that clathrin is synthesized on bound and free ribosomes and discharged into the cytosol where it becomes associated with a variety of ground substances and assembles on coated pits, coated vesicles, Golgi-associated vesicles, presynaptic vesicles, and pre- and postsynaptic membranes. Clathrin may be finally degraded in autophagic vacuoles.  相似文献   

4.
Summary Horseradish peroxidase (HRP) was introduced directly into the cerebral cortex of adult rats, which were allowed to survive for 60 min before perfusion fixation. After the tissue had been incubated to demonstrate HRP at the LM and EM levels, blocks of cortical tissue were taken at varying distances from the injection site. These eight blocks of tissue constituted a time sequence for HRP diffusion.Qualitative examination of the presynaptic terminals showed that the most commonly encountered profiles are the plain synaptic vesicles, many of which accumulate tracer. In some terminals labelled vesicles are lined-up in tubular fashion. Other profiles commonly labelled are coated vesicles, tubular and vacuolar cisternae, and plain and coated pinocytotic vesicles.Quantitative analyses based on the number of terminals containing labelled profiles demonstrate an early rise in the rate of labelling of both plain synaptic vesicles and coated vesicles, after which synaptic vesicle labelling rises slowly towards a plateau. By contrast, there is a late parallel increase in the rate of labelling of coated vesicles and cisternae. A more detailed analysis, based on the actual numbers of labelled and total profiles within each presynaptic terminal, highlight early and late periods of rapid labelling for plain synaptic vesicles, coated vesicles and cisternae. A further aspect of HRP incorporation studied, concerns its uptake into four delineated regions of the presynaptic terminal.Our data indicate that membrane uptake into the presynaptic terminal is accomplished mainly via coated vesicles, although plain synaptic vesicles may also be involved. Coated vesicles, in turn, appear to give rise directly to plain synaptic vesicles, with some coalescing to produce vacuolar cisternae. The latter are involved in a two-way interchange of membrane with tubular cisternae, plain synaptic vesicles and coated vesicles. An additional source of plain synaptic vesicles are the tubular cisternae. Exocytosis of plain synaptic vesicles constitutes the mechanism by which transmitter is released from the presynaptic terminal.Supported by the Nuffield Foundation. We are grateful to Mr. M. Austin for help with the photography  相似文献   

5.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

6.
A number of cell structures are described which show a morphological relationship to the bile canaliculi. Two types of peribiliary vesicles are identified: osmication positive ones occurring between the bile canaliculi and the osmicated immature Golgi cisternae and probably deriving from the latter, and osmication negative ones related to MVB, on which they appear as buds. Small coated vesicles are seen attached to this second type. Large lacunae may originate from MVB, as suggested by the MVB-like internal vesicles they may contain. Some stay in luminal continuity with the bile canaliculi. Canalicular coated vesicles are seen as parts of the canalicular plasma membrane and free in the cytoplasm.  相似文献   

7.
The role of coated vesicles in recycling of synaptic vesicle membrane   总被引:9,自引:0,他引:9  
The uptake of extracellular tracers into synaptic nerve terminals has been a phenomenon of persistent interest. Uptake is into synaptic vesicles, hence vesicles spend part of their life in continuity with the plasma membrane, as expected if exocytosis underlies the quantal discharge of neurotransmitters. However, exactly how or when synaptic vesicles acquire extracellular tracers has not been unambiguously determined. Two schools of thought have developed, one holding that vesicles acquire tracers directly via a reversible exo/endocytotic sequence in which they consistently maintain their biochemical identity during their transient continuity with the plasma membrane, the other holding that synaptic vesicles acquire tracers indirectly, via the formation of clathrin-coated vesicles which are spatially and temporally separate from exocytosis and reverse a temporary loss of the vesicles' individual identity upon merger with the plasma membrane. Efforts to distinguish between these two alternatives have generated an interesting diversity of electron microscopic experiments, many of which are reviewed here. However, definitive determination of which view is correct may ultimately require direct visualization of synaptic vesicle turnover in living nerve terminals. To this end, we here review the results of visualizing endocytosis in tissue cultured cells, where light microscopy can provide sufficient resolution to reveal membrane dynamics in living cells. This has allowed visual discrimination of two different types of endocytosis, one clathrin-mediated (coated vesicle formation) and the other actin-mediated (macropinocytosis). Current work is also reviewed which aims at determining experimental methods for inhibiting each type of endocytosis selectively. Hypertonicity and severe cytoplasmic acidification turn out to inhibit coated vesicle formation, while cytochalasin D and mild cytoplasmic acidification selectively inhibit macropinocytosis. Applied to nerves, these various treatments affect synaptic vesicle turnover in a manner that supports the notion that synaptic vesicle membrane recycles via the "indirect" route of coated vesicle formation.  相似文献   

8.
The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.  相似文献   

9.
Membrane recycling in the cone cell endings of the turtle retina   总被引:8,自引:5,他引:3       下载免费PDF全文
  相似文献   

10.
Summary The cells of the mesenteric caeca in the midgut of certain insects possess a labyrinth of transepithelial cisternae. Their existence can be seen in thin sections of lanthanum-incubated tissue, where the tracer enters not only the intercellular clefts but also membranous cisternae which are inpocketings from, and, in continuity with, both the lateral clefts and basal membrane. These infoldings, which are numerous, run from the basal or lateral surfaces into the perinuclear region of the cells, where they are found, laden with lanthanum, as smooth cisternae or vesicles in the peripheral cytoplasm near the plasma membrane. These can be followed in serial sections and are quite distinct from other sub-surface cisternae of the lateral borders which are studded with ribosomes on the cytoplasmic surface. Near the luminal surface, tracer-laden structures in the form of vesicles and granules become increasingly predominant over those in the form of cisternae. Freeze-fracture replicas confirm the above observations, in that the plasma membrane of the intercellular cleft can be characterized as such unequivocally, since it exhibits smooth septate junctional E face grooves and P face ridges. Lateral infoldings, cisternae and vesicles can be seen arising directly from these junction-bearing membranes. The transepithelial cisternae and vesicles may be the morphological basis of an insect transcellular transport system, comparable to the tubulocisternal endoplasmic reticulum present in the transporting secretory and absorptive epithelia of vertebrate tissues. However, in insect midgut caecal epithelia, the cisternae appear to be, albeit presumably transiently, in direct continuity with the extracellular space, forming a plasma membrane reticular system which seems not to be the case with the tubulo-cisternal endoplasmic reticulum which terminates in subsurface cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号