首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Protein kinase C iota (PKCiota) has been implicated in Ras signaling, however, a role for PKCiota in oncogenic Ras-mediated transformation has not been established. Here, we show that PKCiota is a critical downstream effector of oncogenic Ras in the colonic epithelium. Transgenic mice expressing constitutively active PKCiota in the colon are highly susceptible to carcinogen-induced colon carcinogenesis, whereas mice expressing kinase-deficient PKCiota (kdPKCiota) are resistant to both carcinogen- and oncogenic Ras-mediated carcinogenesis. Expression of kdPKCiota in Ras-transformed rat intestinal epithelial cells blocks oncogenic Ras-mediated activation of Rac1, cellular invasion, and anchorage-independent growth. Constitutively active Rac1 (RacV12) restores invasiveness and anchorage-independent growth in Ras-transformed rat intestinal epithelial cells expressing kdPKCiota. Our data demonstrate that PKCiota is required for oncogenic Ras- and carcinogen-mediated colon carcinogenesis in vivo and define a procarcinogenic signaling axis consisting of Ras, PKCiota, and Rac1.  相似文献   

2.
Most human cancers involve either mutational activation of the Ras oncogenic pathway and/or inactivation of the retinoblastoma tumor suppressor (RB) pathway. Paradoxically, tumors that harbor Ras mutations almost invariably retain expression of a wild-type pRB protein. We explain this phenomenon by demonstrating that Ras-induced oncogenic transformation surprisingly depends on functional pRB protein. Cells lacking pRB are less susceptible to the oncogenic actions of H-RasV12 than wild-type cells and activated Ras has an inhibitory effect on the proliferation of pRB-deficient human tumor cells. In addition, depletion of pRB from Ras-transformed murine cells or human tumor cells that harbor Ras pathway mutations inhibits their proliferation and anchorage-independent growth. In sharp contrast to pRB-/- 3T3 cells, fibroblasts deficient in other pRB family members (p107 and p130) are more susceptible to Ras-mediated transformation than wild-type 3T3 cells. Moreover, loss of pRB in tumor cells harboring a Ras mutation results in increased expression of p107, and overexpression of p107 but not pRB strongly inhibits proliferation of these tumor cells. Together, these findings suggest that pRB and p107 have distinct roles in Ras-mediated transformation and suggest a novel tumor-suppressive role for p107 in the context of activated Ras.  相似文献   

3.
Although substantial evidence supports a critical role for the activation of Raf-1 and mitogen-activated protein kinases (MAPKs) in oncogenic Ras-mediated transformation, recent evidence suggests that Ras may activate a second signaling pathway which involves the Ras-related proteins Rac1 and RhoA. Consequently, we used three complementary approaches to determine the contribution of Rac1 and RhoA function to oncogenic Ras-mediated transformation. First, whereas constitutively activated mutants of Rac1 and RhoA showed very weak transforming activity when transfected alone, their coexpression with a weakly transforming Raf-1 mutant caused a greater than 35-fold enhancement of transforming activity. Second, we observed that coexpression of dominant negative mutants of Rac1 and RhoA reduced oncogenic Ras transforming activity. Third, activated Rac1 and RhoA further enhanced oncogenic Ras-triggered morphologic transformation, as well as growth in soft agar and cell motility. Finally, we also observed that kinase-deficient MAPKs inhibited Ras transformation. Taken together, these data support the possibility that oncogenic Ras activation of Rac1 and RhoA, coupled with activation of the Raf/MAPK pathway, is required to trigger the full morphogenic and mitogenic consequences of oncogenic Ras transformation.  相似文献   

4.
Stengel KR  Zheng Y 《PloS one》2012,7(6):e37317
The ras proto-oncogene is one of the most frequently mutated genes in human cancer. However, given the prevalence of activating mutations in Ras and its association with aggressive forms of cancer, attempts to therapeutically target aberrant Ras signaling have been largely disappointing. This lack of progress highlights the deficiency in our understanding of cellular pathways required for Ras-mediated tumorigenesis and suggests the importance of identifying new molecular pathways associated with Ras-driven malignancies. Cdc42 is a Ras-related small GTPase that is known to play roles in oncogenic processes such as cell growth, survival, invasion, and migration. A pan-dominant negative mutant overexpression approach to suppress Cdc42 and related pathways has previously shown a requirement for Cdc42 in Ras-induced anchorage-independent cell growth, however the lack of specificity of such approaches make it difficult to determine if effects are directly related to changes in Cdc42 activity or other Rho family members. Therefore, in order to directly and unambiguously address the role of Cdc42 in Ras-mediated transformation, tumor formation and maintenance, we have developed a model of conditional cdc42 gene in Ras-transformed cells. Loss of Cdc42 drastically alters the cell morphology and inhibits proliferation, cell cycle progression and tumorigenicity of Ras-transformed cells, while non-transformed cells or c-Myc transformed cells are largely unaffected. The loss of Cdc42 in Ras-transformed cells results in reduced Akt signaling, restoration of which could partially rescues the proliferation defects associated with Cdc42 loss. Moreover, disruption of Cdc42 function in established tumors inhibited continued tumor growth. These studies implicate Cdc42 in Ras-driven tumor growth and suggest that targeting Cdc42 is beneficial in Ras-mediated malignancies.  相似文献   

5.
Oncogenic Ras in tumour progression and metastasis   总被引:6,自引:0,他引:6  
Giehl K 《Biological chemistry》2005,386(3):193-205
The ras genes give rise to a family of related GTP-binding proteins that exhibit potent transforming potential. Mutational activation of Ras proteins promotes oncogenesis by disturbing a multitude of cellular processes, such as gene expression, cell cycle progression and cell proliferation, as well as cell survival, and cell migration. Ras signalling pathways are well known for their involvement in tumour initiation, but less is known about their contribution to invasion and metastasis. This review summarises the role and mechanisms of Ras signalling, especially the role of the Ras effector cascade Raf/MEK/ERK, as well as the phosphatidylinositol 3-kinase/Akt pathway in Ras-mediated transformation and tumour progression. In addition, it discusses the impact of Rho GTPases on Ras-mediated transformation and metastasis.  相似文献   

6.
Anchorage-independent proliferation is a hallmark of oncogenic transformation and is thought to be conducive to proliferation of cancer cells away from their site of origin. We have previously reported that primary Schwann cells expressing the SV40 Large T antigen (LT) are not fully transformed in that they maintain a strict requirement for attachment, requiring a further genetic change, such as oncogenic Ras, to gain anchorage-independence. Using the LT-expressing cells, we performed a genetic screen for anchorage-independent proliferation and identified Sensory and Motor Neuron Derived Factor (SMDF), a transmembrane class III isoform of Neuregulin 1. In contrast to oncogenic Ras, SMDF induced enhanced proliferation in normal primary Schwann cells but did not trigger cellular senescence. In cooperation with LT, SMDF drove anchorage-independent proliferation, loss of contact inhibition and tumourigenicity. This transforming ability was shared with membrane-bound class III but not secreted class I isoforms of Neuregulin, indicating a distinct mechanism of action. Importantly, we show that despite being membrane-bound signalling molecules, class III neuregulins transform via a cell intrinsic mechanism, as a result of constitutive, elevated levels of ErbB signalling at high cell density and in anchorage-free conditions. This novel transforming mechanism may provide new targets for cancer therapy.  相似文献   

7.
Kim S  Lee YZ  Kim YS  Bahk YY 《Proteomics》2008,8(15):3082-3093
Point mutations in three kinds of Ras protein (H-, K-, and N-Ras) that specifically occur in codons 12, 13, and 61 facilitate virtually all of the malignant phenotype of the cancer cells, including cellular proliferation, transformation, invasion, and metastasis. In order to elucidate an understanding into the oncogenic ras networks by H-, K-, and N-Ras/G12V, we have established various oncogenic ras expressing NIH/3T3 mouse embryonic fibroblast clones using the tetracycline-induction system, which are expressing Ras/G12V proteins under the tight control of expression by an antibiotics, doxycycline. Here we provide a catalog of proteome profiles in total cell lysates derived from three oncogenic ras expressing NIH/3T3 cells and a good in vitro model system for dissecting the protein networks due to these oncogenic Ras proteins. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis, and MALDI-TOF MS analysis using the unique Tet-on inducible expression system. There were a large number of common targets for oncogenic ras, which were identified in all three cell lines and consisted of 204 proteins (61 in the pH range of 4-7, 63 in 4.5-5.5, and 80 in 5.5-6.7). Differentially regulated expression was further confirmed for some subsets of candidates by Western blot analysis using specific antibodies. Taken together, we implemented a 2-DE-based proteomics approach to the systematical analysis of the dysregulations in the cellular proteome of NIH/3T3 cells transformed by three kinds of oncogenic ras. Our results obtained and presented here show that the comparative analysis of proteome from oncogenic ras expressing cells has yielded interpretable data to elucidate the differential protein expression directly and/or indirectly, and contributed to evaluate the possibilities for physiological, and therapeutic targets. Further studies are in progress to elucidate the implications of these findings in the regulation of Ras induced transformation.  相似文献   

8.
9.
Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3-5). Mutation of either p19ARF or p53 alleviates Ras-induced senescence and facilitates oncogenic transformation by Ras. Here we report that, whereas Rb and p107 are each dispensable for Ras-induced replicative arrest, simultaneous ablation of both genes disrupts Ras-induced senescence and results in unrestrained proliferation. This occurs despite activation by Ras of the p19ARF /p53 pathway, identifying pRb and p107 as essential mediators of Ras-induced antiproliferative p19ARF/p53 signalling. Unexpectedly, in contrast to p19ARF or p53 deficiency, loss of Rb/p107 function does not result in oncogenic transformation by Ras, as Ras-expressing Rb-/-/p107-/- fibroblasts fail to grow anchorage-independently in vitro and are not tumorigenic in vivo. These results demonstrate that in the absence of both Rb and p107 cells are resistant to p19ARF/p53-dependent protection against Ras-induced proliferation, and uncouple escape from Ras-induced premature senescence from oncogenic transformation.  相似文献   

10.
Recent advances have highlighted the complex web of biological mechanisms and pathways involved in oncogenic transformation and maintenance of the cancer phenotype. To that end, a number of key factors have been identified and thoroughly investigated over the past couple of decades, such as redox regulation of cell fate decisions, cellular metabolism and bioenergetics, autophagy induction as a survival signal, and how these pathways interplay with oncogene-induced transformation. This has been particularly well documented for oncoprotein Ras-induced carcinogenesis, and recent reports provide ample evidence to indicate a well-coordinated crosstalk between these diverse cellular pathways in the process of cancer initiation and progression. Here we provide a brief summary of the recent advances in the field to illustrate the dual role of autophagy as a tumor suppressor and as a survival mechanism required for cancer maintenance as well as its implication in the complex relationship between Ras-mediated carcinogenesis, mitochondrial metabolism, cellular redox status and bioenergetics.  相似文献   

11.
12.
Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein.  相似文献   

13.
14.
Constitutively activated Ras proteins are associated with a large number of human cancers, including those originating from skeletal muscle tissue. In this study, we show that ectopic expression of oncogenic Ras stimulates proliferation of the MM14 skeletal muscle satellite cell line in the absence of exogenously added fibroblast growth factors (FGFs). MM14 cells express FGF-1, -2, -6, and -7 and produce FGF protein, yet they are dependent on exogenously supplied FGFs to both maintain proliferation and repress terminal differentiation. Thus, the FGFs produced by these cells are either inaccessible or inactive, since the endogenous FGFs elicit no detectable biological response. Oncogenic Ras-induced proliferation is abolished by addition of an anti-FGF-2 blocking antibody, suramin, or treatment with either sodium chlorate or heparitinase, demonstrating an autocrine requirement for FGF-2. Oncogenic Ras does not appear to alter cellular export rates of FGF-2, which does not possess an NH(2)-terminal or internal signal peptide. However, oncogenic Ras does appear to be involved in releasing or activating inactive, extracellularly sequestered FGF-2. Surprisingly, inhibiting the autocrine FGF-2 required for proliferation has no effect on oncogenic Ras-mediated repression of muscle-specific gene expression. We conclude that oncogenic Ras-induced proliferation of skeletal muscle cells is mediated via a unique and novel mechanism that is distinct from Ras-induced repression of terminal differentiation and involves activation of extracellularly localized, inactive FGF-2.  相似文献   

15.
16.
Cells expressing oncogenic Ras proteins transmit a complex set of signals that ultimately result in constitutive activation of signaling molecules, culminating in unregulated cellular function. Although the role of oncogenic Ras in a variety of cellular responses including transformation, cell survival, differentiation, and migration is well documented, the direct Ras/effector interactions that contribute to the different Ras biological end points have not been as clearly defined. Observations by other groups in which Ras-dependent transformation can be blocked by expression of either dominant negative forms of Phosphatidylinositol (PI) 3-kinase or PTEN, a 3-phosphoinositide-specific phosphatase, support an essential role for PI 3-kinase and its lipid products in the transformation process. These observations coupled with the in vitro observations that the catalytic subunits of PI 3-kinase, the p110 isoforms, bind directly to Ras-GTP foster the implication that a direct interaction between an oncogenic Ras protein and PI 3-kinase are causal in the oncogenicity of mutant Ras proteins. Using an activated Ha-Ras protein (Y64G/Y71G/F156L) that fails to interact with PI 3-kinase, we demonstrate that oncogenic Ha-Ras does not require a direct interaction with PI 3-kinase to support anchorage-independent growth of IEC-6 epithelial cells. We do find, however, that IEC-6 cells expressing an oncogenic Ha-Ras protein that no longer binds PI 3-kinase are greatly impaired in their ability to migrate toward fibronectin.  相似文献   

17.
18.
《Autophagy》2013,9(1):129-131
Farnesyltransferase inhibitors (FTIs) were designed to block the action of Ras oncoproteins which depend on posttranslational modification by adding a farnesyl isoprenoid membrane anchor. However, off-target actions are believed to account for most of their antitumor activity. We recently reported the induction of autophagy in cancer cells in a dose-dependent manner by FTIs. We observed similar results of autophagy in a panel of tumor cell lines for the three FTIs tested. Therefore, the induction of autophagy is very likely a pharmacological class effect of inhibition of farnesyltransferase. In this addendum, we discuss the possible mechanisms underlying the induction of autophagy by FTIs, including reactive oxygen species-, DNA damage- and Ras-mediated pathways as alternatives to Rheb-mediated regulation of mTOR and autophagy.  相似文献   

19.
20.
BACKGROUND: The Ral guanine nucleotide-exchange factors (RalGEFs) serve as key effectors for Ras oncogene transformation of immortalized human cells. RalGEFs are activators of the highly related RalA and RalB small GTPases, although only the former has been found to promote Ras-mediated growth transformation of human cells. In the present study, we determined whether RalA and RalB also had divergent roles in promoting the aberrant growth of pancreatic cancers, which are characterized by the highest occurrence of Ras mutations. RESULTS: We now show that inhibition of RalA but not RalB expression universally reduced the transformed and tumorigenic growth in a panel of ten genetically diverse human pancreatic cancer cell lines. Despite the apparent unimportant role of RalB in tumorigenic growth, it was nevertheless critical for invasion in seven of nine pancreatic cancer cell lines and for metastasis as assessed by tail-vein injection of three different tumorigenic cell lines tested. Moreover, both RalA and RalB were more commonly activated in pancreatic tumor tissue than other Ras effector pathways. CONCLUSIONS: RalA function is critical to tumor initiation, whereas RalB function is more important for tumor metastasis in the tested cell lines and thus argues for critical, but distinct, roles of Ral proteins during the dynamic progression of Ras-driven pancreatic cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号