首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

2.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

3.
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.  相似文献   

4.
Y Zhao  M Kawai 《Biophysical journal》1994,67(4):1655-1668
The effect of temperature on elementary steps of the cross-bridge cycle was investigated with sinusoidal analysis technique in skinned rabbit psoas fibers. We studied the effect of MgATP on exponential process (C) to characterize the MgATP binding step and cross-bridge detachment step at six different temperatures in the range 5-30 degrees C. Similarly, we studied the effect of MgADP on exponential process (C) to characterize the MgADP binding step. We also studied the effect of phosphate (Pi) on exponential process (B) to characterize the force generation step and Pi-release step. From the results of these studies, we deduced the temperature dependence of the kinetic constants of the elementary steps and their thermodynamic properties. We found that the MgADP association constant (K0) and the MgATP association constant (K1) significantly decreased when the temperature was increased from 5 to 20 degrees C, implying that nucleotide binding became weaker at higher temperatures. K0 and K1 did not change much in the 20-30 degree C range. The association constant of Pi to cross-bridges (K5) did not change much with temperature. We found that Q10 for the cross-bridge detachment step (k2) was 2.6, and for its reversal step (k-2) was 3.0. We found that Q10 for the force generation step (Pi-isomerization step, k4) was 6.8, and its reversal step (k-4) was 1.6. The equilibrium constant of the detachment step (K2) was not affected much by temperature, whereas the equilibrium constant of the force generation step (K4) increased significantly with temperature increase. Thus, the force generation step consists of an endothermic reaction. The rate constant of the rate-limiting step (k6) did not change much with temperature, whereas the ATP hydrolysis rate increased significantly with temperature increase. We found that the force generation step accompanies a large entropy increase and a small free energy change; hence, this step is an entropy-driven reaction. These observations are consistent with the hypothesis that the hydrophobic interaction between residues of actin and myosin underlies the mechanism of force generation. We conclude that the force generation step is the most temperature-sensitive step among elementary steps of the cross-bridge cycle, which explains increased isometric tension at high temperatures in rabbit psoas fibers.  相似文献   

5.
The force-generation and phosphate-release steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibers (STF) were investigated using sinusoidal analysis, and the results were compared with those of rabbit psoas fast-twitch fibers (FTF). Single fiber preparations were activated at pCa 4.40 and ionic strength 180 mM at 20 degrees C. The effects of inorganic phosphate (Pi) concentrations on three exponential processes, B, C, and D, were studied. Results are consistent with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, D is MgADP, and P is inorganic phosphate. The values determined are k4 = 5.7 +/- 0.5 s-1 (rate constant of isomerization step, N = 9, mean +/- SE), k-4 = 4.5 +/- 0.5 s-1 (rate constant of reverse isomerization), K4 = 1.37 +/- 0.13 (equilibrium constant of the isomerization), and K5 = 0.18 +/- 0.01 mM-1 (Pi association constant). The isomerization step (k4) in soleus STF is 20 times slower, and its reversal (k-4) is 20 times slower than psoas fibers. Consequently, the equilibrium constant of the isomerization step (K4) is the same in these two types of fibers. The Pi association constant (K5) is slightly higher in STF than in FTF, indicating that Pi binds to cross-bridges slightly more tightly in STF than FTF. By correlating the cross-bridge distribution with isometric tension, it was confirmed that force is generated during the isomerization (step 4) of the AMDP state and before Pi release in soleus STF.  相似文献   

6.
The elementary steps of contraction in rabbit fast twitch muscle fibers were investigated with particular emphasis on the mechanism of phosphate (Pi) binding/release, the mechanism of force generation, and the relation between them. We monitor the rate constant 2 pi b of a macroscopic exponential process (B) by imposing sinusoidal length oscillations. We find that the plot of 2 pi b vs. Pi concentration is curved. From this observation we infer that Pi released is a two step phenomenon: an isomerization followed by the actual Pi release. Our results fit well to the kinetic scheme: [formula: see text] where A = actin, M = myosin, S = MgATP (substrate), D = MgADP, P = phosphate, and Det is a composite of all the detached and weakly attached states. For our data to be consistent with this scheme, it is also necessary that step 4 (isomerization) is observed in process (B). By fitting this scheme to our data, we obtained the following kinetic constants: k4 = 56 s-1, k-4 = 129 s-1, and K5 = 0.069 mM-1, assuming that K2 = 4.9. Experiments were performed at pCa 4.82, pH 7.00, MgATP 5 mM, free ATP 5 mM, ionic strength 200 mM in K propionate medium, and at 20 degrees C. Based on these kinetic constants, we calculated the probability of each cross-bridge state as a function of Pi, and correlated this with the isometric tension. Our results indicate that all attached cross-bridges support equal amount of tension. From this, we infer that the force is generated at step 4. Detailed balance indicates that 50-65% of the free energy available from ATP hydrolysis is transformed to work at this step. For our data to be consistent with the above scheme, step 6 must be the slowest step of the cross-bridge cycle (the rate limiting step). Further, AM*D is a distinctly different state from the AMD state that is formed by adding D to the bathing solution. From our earlier ATP hydrolysis data, we estimated k6 to be 9 s-1.  相似文献   

7.
The role of the substrate (MgATP) and product (MgADP) molecules in cross-bridge kinetics is investigated by small amplitude length oscillations (peak to peak: 3 nm/cross-bridge) and by following amplitude change and phase shift in tension time courses. The range of discrete frequencies used for this investigation is 0.25-250 Hz, which corresponds to 0.6-600 ms in time domain. This report investigates the identity of the high frequency exponential advance (process C), which is equivalent to "phase 2" of step analysis. The experiments are performed in maximally activated (pCa 4.5-5.0) single fibers from chemically skinned rabbit psoas fibers at 20 degrees C and at the ionic strength 195 mM. The rate constant 2 pi c deduced from process (C) increases and saturates hyperbolically with an increase in MgATP concentration, whereas the same rate constant decreases monotonically with an increase in MgADP concentration. The effects of MgATP and MgADP are opposite in all respects we have studied. These observations are consistent with a cross-bridge scheme in which MgATP and MgADP are in rapid equilibria with rigorlike cross-bridges, and they compete for the substrate site on myosin heads. From our measurements, the association constants are found to be 1.4 mM-1 for MgATP and 2.8 mM-1 for MgADP. We further deduced that the composite second order rate constant of MgATP binding to cross-bridges and subsequent isomerization/dissociation reaction to be 0.57 x 10(6)M-1s-1.  相似文献   

8.
The role of regulatory proteins in the elementary steps of the cross-bridge cycle in bovine myocardium was investigated. The thin filament was selectively removed by gelsolin and the actin filament was reconstituted without tropomyosin or troponin. Further reconstitution was achieved by adding tropomyosin and troponin. The effects of MgATP and phosphate (Pi) on the rate constants of exponential processes were studied in control, actin filament-reconstituted, and thin filament-reconstituted myocardium at pCa < or = 4.66, pH 7.00, 25 degrees C. In control myocardium, the MgATP association constant was 9.1 +/- 1.3 mM(-1), and the Pi association constant 0.14 +/- 0.04 mM(-1). The equilibrium constant of the cross-bridge detachment step was 2.6 +/- 0.4, and the equilibrium constant of the force generation step was 0.59 +/- 0.04. In actin filament-reconstituted myocardium without regulatory proteins, the MgATP association constant was approximately the same, and the Pi association constant increased to 2.8x. The equilibrium constant of cross-bridge detachment decreased to 0.2x, but the equilibrium constant of the force generation step increased to 4x. These kinetic constants regained control values after reconstitution of the thin filament. These results indicate that tension/cross-bridge in the presence of regulatory proteins is approximately 1.5-1.7x of that in the absence of regulatory proteins. These results further indicate that regulatory proteins promote detachment of cross-bridges.  相似文献   

9.
Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin.   总被引:4,自引:0,他引:4  
To test the idea that the in vitro motility assay is a simplified model system for muscle contraction, the MgATP-dependent movement of actin filaments by thiophosphorylated smooth muscle myosin was characterized in the presence of the products MgADP and inorganic phosphate. The dependence of actin filament velocity on MgATP concentration was hyperbolic with a maximum velocity of 0.6 micron/s and an apparent Km = 40 microM (30 degrees C). MgADP competitively inhibited actin movement by MgATP with a Ki = 0.25 mM. Inorganic phosphate did not affect actin filament velocity in the presence of 1 mM MgATP, but competitively inhibited movement in the presence of 50 microM MgATP with a Ki = 9.5 mM. The effects of ADP and Pi on velocity agree with fiber mechanical studies, confirming that the motility assay is an excellent system to investigate the molecular mechanisms of force generation and shortening in smooth muscle. The rate at which rigor cross-bridges can be recruited to move actin filaments was observed by initiating cross-bridge cycling from rigor by flash photolysis of caged MgATP. Following the flash, which results in a rapid increase in MgATP concentration, actin filaments experienced a MgATP-dependent delay prior to achieving steady state velocity. The delay at low MgATP concentrations was interpreted as evidence that motion generating cross-bridges are slowed by a load due to a transiently high percentage of rigor cross-bridges immediately following MgATP release.  相似文献   

10.
To understand the molecular mechanism underlying the diversity of mammalian skeletal muscle fibers, the elementary steps of the cross-bridge cycle were investigated in three fast-twitch fiber types from rabbit limb muscles. Skinned fibers were maximally Ca(2+)-activated at 20 degrees C and the effects of MgATP, phosphate (P, P(i)), and MgADP were studied on three exponential processes by sinusoidal analysis. The fiber types (IIA, IID, and IIB) were determined by analyzing the myosin heavy-chain isoforms after mechanical experiments using high-resolution SDS-PAGE. The results were consistent with the following cross-bridge scheme: where A is actin, M is myosin, D is MgADP, and S is MgATP. All states except for those in brackets are strongly bound states. All rate constants of elementary steps (k(2), 198-526 s(-1); k(-2), 51-328 s(-1); k(4), 13.6-143 s(-1); k(-4), 13.6-81 s(-1)) were progressively larger in the order of type IIA, type IID, and type IIB fibers. The rate constants of a transition from a weakly bound state to a strongly bound state (k(-2), k(4)) varied more among fiber types than their reversals (k(2), k(-4)). The equilibrium constants K(1) (MgATP affinity) and K(2) (=k(2)/k(-2), ATP isomerization) were progressively less in the order IIA, IID, and IIB. K(4) (=k(4)/k(-4), force generation) and K(5) (P(i) affinity) were larger in IIB than IIA and IID fibers. K(1) showed the largest variation indicating that the myosin head binds MgATP more tightly in the order IIA (8.7 mM(-1)), IID (4.9 mM(-1)), and IIB (0.84 mM(-1)). Similarly, the MgADP affinity (K(0)) was larger in type IID fibers than in type IIB fibers.  相似文献   

11.
The kinetics of ATP-induced rigor cross-bridge detachment were studied by initiating relaxation in chemically skinned trabeculae of the guinea pig heart using photolytic release of ATP in the absence of calcium ions (pCa > 8). The time course of the fall in tension exhibited either an initial plateau phase of variable duration with little change in tension or a rise in tension, followed by a decrease to relaxed levels. The in-phase component of tissue stiffness initially decreased. The rate then slowed near the end of the tension plateau, indicating transient cross-bridge rebinding, before falling to relaxed levels. Estimates of the apparent second-order rate constant for ATP-induced detachment of rigor cross-bridges based on the half-time for relaxation or on the half-time to the convergence of tension records to a common time course were similar at 3 x 10(3) M-1 s-1. Because the characteristics of the mechanical transients observed during relaxation from rigor were markedly similar to those reported from studies of rabbit psoas fibers in the presence of MgADP (Dantzig, J. A., M. G. Hibberd, D. R. Trentham, and Y. E. Goldman. 1991. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J. Physiol. 432:639-680), direct measurements of MgADP using [3H]ATP in cardiac tissue in rigor were made. Results indicated that during rigor, nearly 18% of the cross-bridges in skinned trabeculae had [3H]MgADP bound. Incubation of the tissue during rigor with apyrase, an enzyme with both ADPase and ATPase activity, reduced the level of [3H]MgADP to that measured following a 2-min chase in a solution containing 5 mM unlabeled MgATP. Apyrase incubation also significantly reduced the tension and stiffness transients, so that both time courses became monotonic and could be fit with a simple model for cross-bridge detachment. The apparent second-order rate constant for ATP-induced rigor cross-bridge detachment measured in the apyrase treated tissue at 4 x 10(4) M-1 s-1 was faster than that measured in untreated tissue. Nevertheless, this rate was still over an order of magnitude slower than the analogous rate measured in previous studies of isolated cardiac actomyosin-S1. These results are consistent with the hypothesis that the presence of MgADP bound cross-bridges suppresses the inhibition normally imposed by the thin filament regulatory system in the absence of calcium ions and allows cross-bridge rebinding and force production during relaxation from rigor.  相似文献   

12.
Isolated skinned frog skeletal muscle fibers were activated (increasing [Ca2+]) and then relaxed (decreasing [Ca2+]) with solution changes, and muscle force and stiffness were recorded during the steady state. To investigate the actomyosin cycle, the biochemical species were changed (lowering [MgATP] and elevating [H2PO4-]) to populate different states in the actomyosin ATPase cycle. In solutions with 200 microM [MgATP], compared with physiological [MgATP], the slope of the plot of relative steady state muscle force vs. stiffness was decreased. At low [MgATP], cross-bridge dissociation from actin should be reduced, increasing the population of the last cross-bridge state before dissociation. These data imply that the last cross-bridge state before dissociation could be an attached low-force-producing or non-force-producing state. In solutions with 10 mM total Pi, compared to normal levels of MgATP, the maximally activated muscle force was reduced more than muscle stiffness, and the slope of the plot of relative steady state muscle force vs. stiffness was reduced. Assuming that in elevated Pi, Pi release from the cross-bridge is reversed, the state(s) before Pi release would be populated. These data are consistent with the conclusion that the cross-bridges are strongly bound to actin before Pi release. In addition, if Ca2+ activates the ATPase by allowing for the strong attachment of the myosin to actin in an A.M.ADP.Pi state, it could do so before Pi release. The calcium sensitivity of muscle force and stiffness in solutions with 4 mM [MgATP] was bracketed by that measured in solutions with 200 microM [MgATP], where muscle force and stiffness were more sensitive to calcium, and 10 mM total Pi, where muscle force and stiffness were less sensitive to calcium. The changes in calcium sensitivity were explained using a model in which force-producing and rigor cross-bridges can affect Ca2+ binding or promote the attachment of other cross-bridges to alter calcium sensitivity.  相似文献   

13.
The present study examined the effects of Ca(2+) and strongly bound cross-bridges on tension development induced by changes in the concentration of MgADP. Addition of MgADP to the bath increased isometric tension over a wide range of [Ca(2+)] in skinned fibers from rabbit psoas muscle. Tension-pCa (pCa is -log [Ca(2+)]) relationships and stiffness measurements indicated that MgADP increased mean force per cross-bridge at maximal Ca(2+) and increased recruitment of cross-bridges at submaximal Ca(2+). Photolysis of caged ADP to cause a 0.5 mM MgADP jump initiated an increase in isometric tension under all conditions examined, even at pCa 6.4 where there was no active tension before ADP release. Tension increased monophasically with an observed rate constant, k(ADP), which was similar in rate and Ca(2+) sensitivity to the rate constant of tension re-development, k(tr), measured in the same fibers by a release-re-stretch protocol. The amplitude of the caged ADP tension transient had a bell-shaped dependence on Ca(2+), reaching a maximum at intermediate Ca(2+) (pCa 6). The role of strong binding cross-bridges in the ADP response was tested by treatment of fibers with a strong binding derivative of myosin subfragment 1 (NEM-S1). In the presence of NEM-S1, the rate and amplitude of the caged ADP response were no longer sensitive to variations in the level of activator Ca(2+). The results are consistent with a model in which ADP-bound cross-bridges cooperatively activate the thin filament regulatory system at submaximal Ca(2+). This cooperative interaction influences both the magnitude and kinetics of force generation in skeletal muscle.  相似文献   

14.
H Shimizu  T Fujita    S Ishiwata 《Biophysical journal》1992,61(5):1087-1098
The length of sarcomeres in isolated myofibrils fixed at both ends spontaneously oscillates when MgADP and Pi coexist with MgATP in the absence of Ca2+ (Okamura, N., and S. Ishiwata, 1988. J. Muscle Res. Cell. Motil. 9:111-119). Here, we report that MgADP and Pi function as an activator and an inhibitor, respectively, of tension development of single skeletal muscle fibers in the absence of Ca2+ and the coexistence of MgADP and Pi with MgATP induces spontaneous tension oscillation. First, the isometric tension sharply increased when the concentration of MgADP became higher than approximately 3x that of MgATP and saturated at approximately 90% of the tension obtained under full Ca2+ activation; in parallel with this sigmoidal increase of tension, MgATPase activity appeared. The inhibition of contraction by the regulatory system seems to be desuppressed by the allosteric effect of actomyosin-ADP complex, similarly to so-called rigor complex. The ADP-induced tension was decreased along a reversed sigmoidal curve by the addition of Pi; actomyosin-ADP-Pi complex, which has no desuppression function, may be formed by exogenous Pi; accompanying the decline of tension, spontaneous oscillations of tension and sarcomere length appeared. It is suggested that the length oscillation of each (half) sarcomere would occur through the transition of cross-bridges between force-generating (on) and non-force-generating (off) states, which may be regulated by the mechanical states (strain) of cross-bridges and/or thin filaments.  相似文献   

15.
The mechanical characteristics of smooth muscle can be broadly defined as either phasic, or fast contracting, and tonic, or slow contracting (, Pharmacol. Rev. 20:197-272). To determine if differences in the cross-bridge cycle and/or distribution of the cross-bridge states could contribute to differences in the mechanical properties of smooth muscle, we determined force and stiffness as a function of frequency in Triton-permeabilized strips of rabbit portal vein (phasic) and aorta (tonic). Permeabilized muscle strips were mounted between a piezoelectric length driver and a piezoresistive force transducer. Muscle length was oscillated from 1 to 100 Hz, and the stiffness was determined as a function of frequency from the resulting force response. During calcium activation (pCa 4, 5 mM MgATP), force and stiffness increased to steady-state levels consistent with the attachment of actively cycling cross-bridges. In smooth muscle, because the cross-bridge states involved in force production have yet to be elucidated, the effects of elevation of inorganic phosphate (P(i)) and MgADP on steady-state force and stiffness were examined. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 12 mM P(i), force and stiffness decreased proportionally, suggesting that cross-bridge attachment is associated with P(i) release. For the aorta, elevating P(i) decreased force more than stiffness, suggesting the existence of an attached, low-force actin-myosin-ADP- P(i) state. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 5 mM MgADP, force remained relatively constant, while stiffness decreased approximately 50%. For the aorta, elevating MgADP decreased force and stiffness proportionally, suggesting for tonic smooth muscle that a significant portion of force production is associated with ADP release. These data suggest that in the portal vein, force is produced either concurrently with or after P(i) release but before MgADP release, whereas in aorta, MgADP release is associated with a portion of the cross-bridge powerstroke. These differences in cross-bridge properties could contribute to the mechanical differences in properties of phasic and tonic smooth muscle.  相似文献   

16.
Addition of MgADP to skinned skeletal muscle fibers causes a rise in Ca(2+)-activated isometric tension. Mechanisms underlying this tension increase have been investigated by rapid photogeneration of ADP within skinned single fibers of rabbit psoas muscle. Photolysis of caged ADP (P2-1(2-nitrophenyl)ethyladenosine 5'-diphosphate) resulted in an exponential increase in isometric tension with an apparent rate constant, kADP, of 9.6 +/- 0.3 s-1 (mean +/- SE, n = 28) and an amplitude, PADP, of 4.9 +/- 0.3% Po under standard conditions (0.5 mM photoreleased MgADP, 4 mM MgATP, pH 7.0, pCa 4.5, 0.18 M ionic strength, 15 degrees C). PADP depended upon the concentration of photoreleased MgADP as well as the concentration of MgATP. A plot of 1/PADP vs. 1/[MgADP] at three MgATP concentrations was consistent with competition between MgADP and MgATP for the same site on the crossbridge. The rate of the transient, kADP, also depended upon the concentration of MgADP and MgATP. At both 4 and 1 mM MgATP, kADP was not significantly different after photorelease of 0.1-0.5 mM MgADP, but was reduced by 28-40% when 3.5 mM MgADP was added before photorelease of 0.5 mM MgADP. kADP was accelerated by about twofold when MgATP was varied from 0.5 to 8 mM MgATP. These effects of MgATP and MgADP were not readily accounted for by population of high force-producing states resulting from reversal of the ADP dissociation process. Rather, the results suggest that competition between MgADP and MgATP for crossbridges at the end of the cycle slows detachment leading to accumulation of force-generating crossbridges. Elevation of steady- state Pi concentration from 0.5 to 30 mM caused acceleration of kADP from 10.2 +/- 0.5 to 27.8 +/- 1.8 s-1, indicating that the tension rise involved crossbridge flux through the Pi dissociation step of the cycle.  相似文献   

17.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

18.
Effects of the non-hydrolyzable nucleotide analogue magnesium pyrophosphate (MgPPi) on cross-bridge properties were investigated in skinned smooth muscle of the guinea pig Taenia coli. A "high" rigor state was obtained by removing MgATP at the plateau of an active contraction. Rigor force decayed slowly towards an apparent plateau of approximately 25-35% of maximal active force. MgPPi markedly increased the rate of force decay. The initial rate of the force decay depended on [MgPPi] and could be described by the Michaelis-Menten equation with a dissociation constant of 1.6 mM. The decay was irreversible amounting to approximately 50% of the rigor force. Stiffness decreased by 20%, suggesting that the major part of the cross-bridges were still attached. The results can be interpreted as "slippage" of PPi-cross-bridges to positions of lower strain. The initial rate of MgPPi-induced force decay decreased with decreasing ionic strength in the range 45-150 mM and was approximately 25% lower in thiophosphorylated fibers. MgADP inhibited the MgPPi-induced force decay with an apparent Ki of 2 microM. The apparent Km of MgATP for the maximal shortening velocity in thiophosphorylated fibers was 32 microM. This low Km of MgATP suggests that steps other than MgATP-induced detachment are responsible for the low shortening velocity in smooth muscle. No effects were observed of 4 mM MgPPi on the force-velocity relation, suggesting that cross-bridges with bound MgPPi do not constitute an internal load or that binding of MgPPi is weaker in negatively strained cross-bridges during shortening.  相似文献   

19.
A model is presented to describe the inhibition of muscle fiber contraction by ligands that compete with MgATP. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decrease the force developed in isometric contractions and act as weak competitive inhibitors of the maximum velocity of contraction (Pate & Cooke, 1985). These observations provide information on the energetics of actomyosin ligand states at the end of the power-stroke where MgATP dissociates the myosin cross-bridge from actin, and they are analysed in terms of a seven state model of cross-bridge kinetics. The model can reconcile the observations that these ligands bind tightly to fibers, Kd = 10(-4) M, while they are only weak inhibitors of fiber velocity, Ki = 2 X 10(-3) M. It provides a reasonable fit to the data and leads to several conclusions concerning the properties of the cross-bridge states. The states with bound ligand are shifted axially so that they occur earlier in the power-stroke than the nucleotide-free rigor state. This shift also explains the axial lengthening seen upon addition of ligands to rigor fibers. We can conclude that these ligands cause small perturbations in the cross-bridge configuration rather than large shifts. A second conclusion is that cross-bridges do not detach from actin during their power-strokes. Instead they traverse the entire length of the power stroke and are detached only at the end, leading to the suggestion that the cycling of bridges in isometric fibers is due to fluctuations in the relative positions of thick and thin filaments. With some further assumptions, the model also explains many of the rate constants and equilibrium constants of the actin-myosin-ligand interaction that have been measured in solution.  相似文献   

20.
The relationship of the biochemical states to the mechanical events in contraction of smooth muscle cross-bridges is reviewed. These studies use direct measurements of the kinetics of Pi and ADP release. The rate of release of Pi from thiophosphorylated cycling cross-bridges held isometric was biphasic with turnovers of 1.8 s-1 and 0.3 s-1, reflecting properties and forces directly acting on cross-bridges through mechanisms such as positive strain and inhibition by high-affinity MgADP binding. Fluorescent transients reporting release of an ADP analogue 3'-deac-edaADP were significantly faster in phasic than in tonic smooth muscles. Thiophosphorylation of myosin regulatory light chains (RLCs) increased and positive strain decreased the release rate around twofold. The rates of ADP release from rigor cross-bridges and the steady-state Pi release from cycling isometric cross-bridges are similar, indicating that the ADP-release step or an isomerization preceding it may limit the ATPase rate. Thus ADP release in phasic and tonic smooth muscles is a regulated step with strain- and dephosphorylation-dependence. High affinity of cross-bridges for ADP and slow ADP release prolong the fraction of the duty cycle occupied by strongly bound AM.ADP state(s) and contribute to the high economy of force that is characteristic of smooth muscle. RLC thiophosphorylation led to structural changes in smooth muscle cross-bridges consistent with our findings that thiophosphorylation and strain modulate product release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号