首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The effects of substance P on the functioning of nicotinic acetylcholine receptors in PC12 cells were examined. Carbachol-stimulated 22Na+ uptake was used to assess the functional state of the nicotinic receptor. We found that incubation of the cells with substance P alone caused a loss of receptor function. Receptors recovered from this effect with a t1/2 of 0.94 +/- 0.10 min. Since receptors recovered from carbachol-induced desensitization at a significantly slower rate (t1/2, 1.77 +/- 0.21 min), it was concluded that the two inactive states are not kinetically equivalent. The effects of substance P on carbachol-induced loss of receptor activity were also examined. Substance P had no effect on a component of carbachol-induced loss of activity that was nonrecoverable (inactivation). However, substance P had several effects on the recoverable loss of activity induced by carbachol (desensitization). Substance P caused a shift to the left in the EC50 for carbachol-induced desensitization at equilibrium. If cells were simultaneously incubated with carbachol and substance P7-11, a low-potency analog of substance P, an increase in the rate of formation of a state of the receptor that was kinetically indistinguishable from the state induced by carbachol alone was observed. However, not all inhibition of nicotinic cholinergic function could be explained by an increased rate of formation of a desensitized receptor and it is concluded that substance P causes both enhanced desensitization and block of the nicotinic receptor-linked channel.  相似文献   

2.
Kinetic properties of cholinergic desensitization in Aplysia neurons   总被引:1,自引:0,他引:1  
The kinetic properties of desensitization onset of excitatory cholinergic responses were studied in isolated, voltage-clamped Aplysia neurons. Desensitization of the acetylcholine (ACh)-induced current in response to microperfused acetylcholine occurred in two phases, and was best modelled as the sum of two exponential components plus a constant. Both exponential components were accelerated by increasing ACh dose. At the higher ACh doses the current decline was dominated by the fast exponential component, and the ratio of the plateau-peak current was reduced. Over the range of membrane potentials -50 to -110 mV, no change in the kinetics of desensitization onset was observed. The mean time constants of both exponential components were doubled by cooling from 20 degrees C to 5 degrees C. These results demonstrate that, as at the vertebrate neuromuscular junction, the onset of desensitization of this ACh response involves at least two processes which are dose- and temperature-sensitive. The lack of voltage dependence contrasts with results from vertebrate preparations, and indicates a fundamental difference between the properties of the excitatory ACh response in Aplysia neurons and the vertebrate neuromuscular junction.  相似文献   

3.
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.  相似文献   

4.
Abstract: Desensitization or habituation to repeated or prolonged stimulation is a common property of secretory cells. Phosphorylation of receptors mediates some desensitization processes, but the relationship of phosphorylation to desensitization at postreceptor sites is not well understood. We have tested the effect of protein phosphorylation on desensitization in bovine chromaffin cells. To increase protein phosphorylation, we have used the protein phosphatase inhibitor okadaic acid at 12.5 nM, 100 pA4 8-bromo-cyclic AMP to activate protein kinase A, and 10 nM phorbol 12,13-dibutyrate to activate protein kinase C . During repeated 6-s stimulation at 5-min intervals, catecholamine secretion from control cells decreases. Cells exposed to 8-bromo-cyclic AMP or okadaic acid alone show slightly decreased rates of desensitization. In cells pretreated with phorbol 12,13-dibutyrate, desensitization is blocked. Okadaic acid-treated cells stimulated in the presence of 8-bromo-cyclic AMP show potentiation of secretion with repeated stimulation. The protein kinase inhibitor 1 -(5-iso-quinolinylsulfonyl)-2-methylpiperazine (H7) increases the desensitization rate. Because these phenomena are observed during secretion evoked with elevated Kf as well as by a nicotinic agonist, the effect of phosphorylation is at a postreceptor site. In contrast to desensitization to the repeated stimulations, desensitization to prolonged stimulation with high K+ is not altered by the above protocols in chromaffin Cells.  相似文献   

5.
P Leprince 《Biochemistry》1983,22(24):5551-5556
The identity of the protein that mediates the nicotinic acetylcholine sensitivity in neuronal cells has been investigated by chemical modification and affinity labeling. When an ion flux assay is used, it is possible to measure specifically the activity of the ionophore associated with the nicotinic acetylcholine receptor in cultured nerve cells (PC-12 pheochromocytoma). This activity is modulated by modification of the redox state of at least one disulfide bridge located at the vicinity of the agonist binding site. The oxidizing agent 5,5'-dithiobis(nitrobenzoic acid) restores the complete receptor response which had been inhibited by reduction with dithiothreitol. N-Ethylmaleimide and the nicotinic affinity labels [4-(N-maleimido)benzyl]-alpha-trimethylammonium iodide and bromoacetylcholine react also with the reduced receptor and irreversibly block the agonist-dependent response of the ionophore. The two affinity labels show strong affinities for the receptor, and apparent IC50 values of 20 and 560 nM can be respectively evaluated. Bromoacetylcholine, being an acetylcholine analogue, blocks the receptor function by desensitization, a process in which the constant interaction with the activator causes a shift into an inactive form of the receptor. Bromoacetylcholine can also be shown to activate untreated as well as reduced cells. In this case, the bound label induces a lasting response which is terminated by the irreversible desensitization of the modified receptor. These experiments thus show that the PC-12 nicotinic ionophore shares functional and structural similarities with peripheral receptors. They suggest that nicotinic affinity labels developed for the muscle receptor can also be used as specific markers of the nicotinic neural ionophore.  相似文献   

6.
A large cytoplasmic domain accounts for approximately one-third of the entire protein of one superfamily of ligand-gated membrane ion channels, which includes nicotinic acetylcholine (nACh), gamma-aminobutyric acid type A (GABA(A)), serotonin type 3 (5-HT3), and glycine receptors. Desensitization is one functional feature shared by these receptors. Because most molecular studies of receptor desensitization have focused on the agonist binding and channel pore domains, relatively little is known about the role of the large cytoplasmic domain (LCD) in this process. To address this issue, we sequentially deleted segments of the LCD of the 5-HT3A receptor and examined the function of the mutant receptors. Deletion of a small segment that contains three amino acid residues (425-427) significantly slowed the desensitization kinetics of the 5-HT3A receptor. Both deletion and point mutation of arginine 427 altered desensitization kinetics in a manner similar to that of the (425-427) deletion without significantly changing the apparent agonist affinity. The extent of receptor desensitization was positively correlated with the polarity of the amino acid residue at 427: the desensitization accelerates with increasing polarity. Whereas the R427L mutation produced the slowest desensitization, it did not significantly alter single channel conductance of 5-HT3A receptor. Thus, the arginine 427 residue in the LCD contributes to 5-HT3A receptor desensitization, possibly through forming an electrostatic interaction with its neighboring residues. Because the polarity of the amino acid residue at 427 is highly conserved, such a desensitization mechanism may occur in other members of the Cys-loop family of ligand-gated ion channels.  相似文献   

7.
1. The thymic hormone thymopoietin blocks neuromuscular transmission and was proposed (Goldstein, 1974) as a modulator of synaptic conductivity. 2. The cholinergic-induced inactivation of nicotinic receptor reconstituted into asolectin lipid vesicles was studied in the presence and in the absence of thymopentin, a synthetic pentapeptide corresponding to positions 32-36 of thymopoietin. 3. The present data show that thymopentin accelerates desensitization of the nicotinic acetylcholine receptor, supporting the aforementioned physiological role proposed for thymopoietin. 4. They also suggest that the hormone itself and/or a yet unidentified hormine-derived peptide fragment may act as an endogenous ligand for nicotinic acetylcholine receptor desensitization.  相似文献   

8.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

9.
A time-dependent increase in ligand affinity has been studied in cholinergic ligand binding to Torpedocalifornica acetylcholine receptor by inhibition of the kinetics of of [125I]-alpha-bungarotoxin-receptor complex formation. The conversion of the acetylcholine receptor from low to high affinity form was induced by both agonists and antagonists of acetylcholine and was reversible upon removal of the ligand. The slow ligand induced affinity change in vitro resembled electrophysiological desensitization observed at the neuromuscular junction and described by a two-state model (Katz, B., & Thesleff, S. (1957) J. Physiol. 138, 63). A quantitative treatment of the rate and equilibrium constants determined for binding of the agonist carbamoylcholine to membrane bound acetylcholine receptor indicated that the two-state model is not compatible with the in vitro results.  相似文献   

10.
Desensitization is a general property of ligand-gated ion channels. Because of a wide array of available subunit combinations, it generates different time constants for channel closure, thereby modulating the processing of information in the brain. Within the family of neuronal nicotinic acetylcholine receptors (nAChRs), alpha 3 beta 2 and alpha 3 beta 4 receptors display contrasting properties of desensitization. When measured using two-electrode voltage-clamp in Xenopus oocytes, desensitization results in current decreases 2 s after initiation of acetylcholine application by 94% for alpha 3 beta 2 receptors, but only by 6% in the case of alpha 3 beta 4 receptors. Desensitization was analyzed by inserting different portions of the beta2 into the beta 4 subunit. Residues 1--212 of the beta2 subunit were able to confer 78% desensitization in 2 s, while smaller chimeras revealed desensitization in 2 s conferred by residues 1--42 alone to a level of 50%, by residues 72--89 to a level of 74%, and by residues 96--212 to a level of 77%. Some long-term (25 min) effects of desensitization driven by acetylcholine were found to rely partially on the same elements, including an enhancement mediated by residues 1--95 and 96--212 of the beta 2 subunit individually. Our results reveal that desensitization relies independently on diverse portions of the extracellular domain of the beta 2 subunit. Phenotype of alpha 3 beta 4 involves, in contrast, complex structural requirements involving residues dispersed throughout the entire N-terminal domain of the beta 4 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号