首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of small hematocrit (Hct) increases on cardiac index (cardiac output/body wt) and oxygen release to the microcirculation was investigated in the awake hamster window chamber model by means of exchange transfusions of homologous packed red blood cells. Increasing Hct between 8 and 13% from baseline increased cardiac index by 5-31% from baseline (P < 0.05) and significantly lowered systemic blood pressure (P < 0.05). The relationship between Hct and cardiac index is described by a second-order polynomial (R2 = 0.84; P < 0.05) showing that Hct increases up to 20% from baseline increase cardiac index, whereas increases over 20% from baseline decrease cardiac index. Combining this data with measurements of blood pressure allowed to determine total peripheral vascular resistance, which was a minimum at 8-13% Hct increase and was described by a second-order polynomial (R2 = 0.83; P < 0.05). Oxygen measurements in arterioles, venules, and the tissue at 8-13% Hct increase were identical to control; thus, as a consequence of increased flow and oxygen-carrying capacity, oxygen delivery and extraction increased, but the change was not statistically significant. Previous results with the same model showed that the observed effects are related to shear stress-mediated release of nitric oxide, an effect that should be also present in the heart microcirculation, leading to increased blood flow, myocardial oxygen consumption, and contractility. We conclude that a minimum viscosity level is necessary for generating the shear stress required for maintaining normal cardiovascular function.  相似文献   

2.
We studied the effects of blood hematocrit (Hct), blood flow, or norepinephrine on segmental vascular resistances in isolated portally perfused rat livers. Total portal hepatic venous resistance (Rt) was assigned to the portal (Rpv), sinusoidal (Rsinus), and hepatic venous (Rhv) resistances using the portal occlusion (Ppo) and the hepatic venous occlusion (Phvo) pressures that were obtained during occlusion of the respective line. Four levels of Hct (30%, 20%, 10%, and 0%) were studied. Rpv comprises 44% of Rt, 37% of Rsinus, and 19% of Rhv in livers perfused at 30% Hct and portal venous pressure of 9.1 cmH2O. As Hct increased at a given blood flow, all three segmental vascular resistances of Rpv, Rsinus, and Rhv increased at flow >15 ml/min. As blood flow increased at a given Hct, only Rsinus increased without changes in Rpv or Rhv. Norepinephrine increased predominantly Rpv, and, to a smaller extent, Rsinus, but it did not affect Rhv. Finally, we estimated Ppo and Phvo from the double occlusion maneuver, which occluded simultaneously both the portal and hepatic venous lines. The regression line analysis revealed that Ppo and Phvo were identical with those measured by double occlusion. In conclusion, changes in blood Hct affect all three segmental vascular resistances, whereas changes in blood flow affect Rsinus, but not Rpv or Rhv. Norepinephrine increases mainly presinusoidal resistance. Ppo and Phvo can be obtained by the double occlusion method in isolated perfused rat livers.  相似文献   

3.
The site of change in pulmonary vascular resistance (PVR) after surfactant displacement with the detergent diocytl sodium sulfosuccinate (OT) was studied in the isolated canine left lower lobe preparation. Changes in PVR were assessed using the arterial and venous occlusion technique and the vascular pressure-flow relationship. Changes in alveolar surface tension were confirmed from measurements of pulmonary compliance as well as from measurements of surface tension of extracts from lung homogenates. After surfactant depletion (the perfusion rate constant) the total pressure gradient (delta PT) across the lobe increased from 13.4 +/- 1 to 17.1 +/- 0.8 mmHg. This increase in delta PT was associated with a significant increase in the arterial and venous gradients (3.7 +/- 0.3 to 4.9 +/- 0.4 and 5.7 +/- 0.5 to 9.4 +/- 0.6 mmHg, respectively) and a decrease in middle pressure gradient (4.1 +/- 0.8 to 2.9 +/- 0.6 mmHg). The vascular pressure-flow relationship supported these findings and showed that the mean slope increased by 52% (P less than 0.05), whereas the pressure intercept decreased slightly but not significantly (3.7 +/- 0.7 to 3.2 +/- 0.8 mmHg). These results suggest that the resistance of arteries and veins increases, whereas the resistance of the middle segment decreases after surfactant depletion. These effects were apparently due to surface tension that acts directly on the capillary wall. Direct visualization of subpleural capillaries supported the notion that capillaries become distended and recruited as alveolar surface tension increases. In the normal lung (perfused at constant-flow rate) changes in alveolar pressure (Palv) were transmitted fully to the capillaries as suggested by equal changes in pulmonary arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Endogenous plasma proteins in edematous lungs and alveolar fluid in rabbits   总被引:1,自引:0,他引:1  
In this study, we compared two methods of differentiating hydrostatic and permeability types of pulmonary edema. The first method entailed measurement of protein concentrations directly in samples of alveolar fluid (AF); the second method was an indirect technique in which protein concentration in extravascular extracellular water (EVECW) was calculated on the basis of separate measurements of the quantity of protein in the lung and the volume of EVECW. The concentration of albumin (Alb) and gamma-G-globulin was measured in EVECW and alveolar fluid in excised edematous rabbit lungs. Edema was caused by elevation of left ventricular end-diastolic pressure to 25 Torr (hydrostatic edema, HE) or by intravenous oleic acid, 0.09 ml/kg (permeability edema, PE). The volume of distribution of Na+ was utilized as a measure of EVECW in the lung. Protein concentration in EVECW and AF relative to plasma (EV/PL and AF/PL, respectively) was compared in the two types of edema. The EV/PL was 0.61 +/- 0.12 (SD) for Alb in He compared with 1.18 +/- 0.47 in PE (P less than 0.02). The AF/PL was 0.54 +/- 0.12 and 1.25 +/- 0.33 in HE and PE, respectively (P less than 0.001). There was good correlation between EV/PL and AF/PL for Alb (r = 0.74, P less than 0.001) but not for gamma-G-globulin. Thus EV/PL for Alb, AF/PL for Alb, and gamma-G-globulin all differentiated hydrostatic from permeability edema.  相似文献   

5.
To determine fluid extravasation in the splanchnic vascular bed during anaphylactic hypotension, the mesenteric lymph flow (Q(lym)) was measured in anesthetized rats sensitized with ovalbumin, along with the systemic arterial pressure (P(sa)) and portal venous pressure (P(pv)). When the antigen was injected into the sensitized rats (n = 10), P(sa) decreased from 125 ± 4 to 37 ± 2 mmHg at 10 min with a gradual recovery, whereas P(pv) increased by 16 mmHg at 2 min and returned to the baseline at 10 min. Q(lym) increased 3.3-fold from the baseline of 0.023 ± 0.002 g/min to the peak levels of 0.075 ± 0.009 g/min at 2 min and returned to the baseline within 12 min. The lymph protein concentrations increased after antigen, a finding indicating increased vascular permeability. To determine the role of the P(pv) increase in the antigen-induced increase in Q(lym), P(pv) of the nonsensitized rats (n = 10) was mechanically elevated in a manner similar to that of the sensitized rats by compressing the portal vein near the hepatic hilus. Unexpectedly, P(pv) elevation alone produced a similar increase in Q(lym), with the peak comparable to that of the sensitized rats. This finding aroused a question why the antigen-induced increase in Q(lym) was limited despite the presence of increased vascular permeability. Thus the changes in splanchnic vascular surface area were assessed by measuring the mesenteric arterial flow. The mesenteric arterial flow was decreased much more in the sensitized rats (75%; n = 5) than the nonsensitized P(pv) elevated rats (50%; n = 5). In conclusion, mesenteric lymph flow increases transiently after antigen presumably due to increased capillary pressure of the splanchnic vascular bed via downstream P(pv) elevation and perfusion and increased vascular permeability in anesthetized rats. However, this increased extravasation is subsequently limited by decreases in vascular surface area and filtration pressure.  相似文献   

6.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

7.
The authors investigated why intrapulmonary shunt (QS/QT) increases with sodium nitroprusside (SNP) in canine oleic acid pulmonary edema. To determine the effects of flow alone on QS/QT, a peripheral arteriovenous fistula with a variable resistor was employed to increase cardiac output (Q) 26 and 52% above base line in a stepwise fashion (P less than 0.01). To examine the direct effects of SNP, distinct from changes in flow, the drug was given to produce matched increments in Q in each dog (P less than 0.01). To control for time, base-line measurements were obtained before and after each intervention, the sequence of which was alternated. At each increment in Q, SNP and the arteriovenous fistula increased QS/QT a similar amount. The mixed venous O2 tension (P-vO2) followed Q similarly in each group. Pulmonary vascular resistance (PVR) fell more (P less than 0.01) with SNP than with the arteriovenous fistula at identical Q and P-vO2. The authors conclude that, in this model, a direct pharmacological effect of SNP does not contribute to the deterioration in QS/QT. In fact, SNP exerts a pulmonary vasoactive effect that does not adversely affect gas exchange.  相似文献   

8.
We hypothesized that toxic O2 radicals might be important mediators of endotoxin-induced acute respiratory failure in pigs. As a relatively specific scavenger of .OH, we infused dimethylthiourea (DMTU, 1 g/kg) before endotoxemia. Escherichia coli endotoxin (055-B5) was infused intravenously into anesthetized 10- to 14-wk-old pigs at 5 micrograms/kg the 1st h, followed by 2 micrograms.kg-1.h-1 for 3.5 h. During phase 1 (i.e., 0-2 h) and phase 2 (i.e., 2-4.5 h), endotoxin decreased cardiac index (CI) and increased mean pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), alveolar-arterial O2 gradient (AaDo2), and hematocrit (Hct). Endotoxemia also caused leukopenia and increased the postmortem bronchoalveolar lavage fluid (BALF) albumin concentration and wet weight-to-dry weight ratio of bloodless lung. Dimethylthiourea did not significantly modify the phase 1 response. However, during phase 2, DMTU attenuated the endotoxin-induced decrease in CI and increases in Ppa, PVR, Hct, AaDo2, lung water, and BALF albumin concentration. In separate groups of endotoxin- and DMTU + endotoxin-treated pigs, lung microvascular hydrostatic pressure was increased to approximately 16 Torr (by fluid overload) to assess alveolar-capillary membrane permeability. Under these conditions, DMTU markedly attenuated the endotoxin-induced increase in alveolar-capillary membrane permeability. Under these conditions, DMTU markedly attenuated the endotoxin-induced induced increase in alveolar-capillary membrane permeability. We conclude that .OH (and possibly H2O2) significantly contributes to endotoxin-induced lung injury in anesthetized pigs.  相似文献   

9.
Distribution of pulmonary vascular resistance in experimental fibrosis   总被引:3,自引:0,他引:3  
To elucidate mechanisms of pulmonary hypertension in interstitial fibrosis, we compared the left lower lobes (LLL) of six dogs in which fibrosis was induced by radiation and bleomycin with the normal right lower lobes (RLL) for 1) slope and intercept of the vascular pressure-flow (P-Q) curves, 2) segmental resistances with arterial and venous occlusion under base-line conditions, after serotonin and vasodilators, and 3) light-microscopic morphology and morphometry. We found that 1) the total volume and vascular compliance of the fibrotic LLL were five and four times less, respectively, than controls, 2) the slope and intercept of the P-Q curves in the LLL were 154.0 +/- 65.8 (SE) mmHg.l-1.min-1 and 8.2 +/- 1.5 mmHg, respectively, compared with 18.3 +/- 2.3 and 3.2 +/- 0.9 for the RLL, 3) the resistance of the arterial, middle, and venous segments in the LLL were higher than in the RLL, but middle segment resistance rose disproportionately, and 4) constriction of the arterial segment with serotonin was similar in LLL and RLL, and vasodilators were ineffective. Histologically, fibrosis involved 36% of the lung, and the capillary bed was severely obliterated. Arteries showed an increased percentage of medial and intimal thickening and peripheral muscularization; venous abnormalities were less marked. We conclude that pulmonary fibrosis increases vascular resistance mainly in the middle segment, largely by loss of tissue and obliteration of the microvasculature.  相似文献   

10.
We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.  相似文献   

11.
We investigated the effects of hypoxic ventilation on the pulmonary arterial pressure- (P) flow (Q) relationship in an intact canine preparation. Mean pulmonary P-Q coordinates were obtained during hypoxic ventilation and during ventilation with 100% O2 at normal and at increased left atrial pressure. Specifically, we tested the hypothesis that, over a wide range, changes in left atrial pressure would alter the effects of hypoxic ventilation on pulmonary P-Q characteristics. Seven dogs were studied. When left atrial pressure was normal (5 mmHg), the mean value of the extrapolated intercept (PI) of the linear P-Q relationship was 10.9 mmHg and the slope (incremental vascular resistance, IR) of the P-Q relationship was 2.2 mmHg.l-1.min. Hypoxic ventilation increased PI to 18 mmHg (P less than 0.01) but did not affect IR. Subsequently, during ventilation with 100% O2, when left atrial pressure was increased to 14 mmHg by inflation of left atrial balloon, PI increased to 18 mmHg. IR was 1.6 mmHg.l-1.min. Again, hypoxic ventilation caused an isolated change in PI. Hypoxia increased PI from 18 to 28 mmHg (P less than 0.01). As in the condition of normal left atrial pressure, hypoxic ventilation did not affect IR. We conclude that, in an anesthetized intact canine preparation, hypoxic ventilation causes an isolated increase in the extrapolated pressure intercept of the pulmonary P-Q relationship. Furthermore the effects of hypoxic ventilation on pulmonary P-Q characteristics are not affected by the resting left atrial pressure.  相似文献   

12.
The level of hematocrit (Hct) is known to affect mean arterial pressure (MAP) by influencing blood viscosity. In the healthy population, an increase in Hct (and corresponding increase in viscosity) tends to raise MAP. However, data from a clinical study of type 2 diabetic patients indicate that this relationship is not universal. Instead, individuals in the lower levels of Hct range display a decrease in MAP for a given rise in Hct. After reaching a minimum, this trend is reversed, so that further increases in Hct lead to increases in MAP. We hypothesize that this anomalous behavior occurs due to changes in the circulatory autoregulation mechanism. To substantiate this hypothesis, we develop a physically based mathematical model that incorporates autoregulation mechanisms. Our model replicates the anomalous U-shaped relationship between MAP and Hct found in diabetic patients in the same range of Hct variability.  相似文献   

13.
Simultaneous measures of vascular permeability to fluid (capillary filtration coefficient, Kf) and to plasma proteins (solvent drag reflection coefficient, sigma) were obtained over venous pressures (Pv) from 14 to 105 Torr in the isolated ventilated canine lung lobe (n = 70) pump perfused with autologous blood. The sigma was obtained from the relative increase in the concentration of plasma proteins vs. erythrocytes during fluid filtration. Kf's were obtained from two gravimetric methods as well as from change in hematocrit. All Kf's increased (P less than 0.05) as Pv was increased. However, sigma averaged 0.59 +/- 0.01 (range 0.54-0.67) and was unchanged (P greater than 0.05) by elevation of Pv over 20-105 Torr. In 44 lobes where all three Kf measures were obtained, gravimetric measures of Kf did not differ (P greater than 0.05) and were highly correlated with Kf obtained from hematocrit change, Vf Kf (P less than 0.001). However, both weight-based Kf's exceeded Vf Kf (P less than 0.05), suggesting that fluid filtration was overestimated by rate of lung weight gain or underestimated by hematocrit change. Increased permeability to water but not to protein over Pv from 20 to 105 Torr indicates that permeability to both can change independently and is counter to the theory that elevated vascular pressure "stretches" vascular pores.  相似文献   

14.
Redistribution of blood flow away from resting skeletal muscles does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p less than 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p less than 0.05) during anemia and was decreased (p less than 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p less than 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Newborn rats were exposed to hypoxia (10% O2 + N2) from 24 h to day 6 of neonatal life and then returned to room air until 45 days of age (experimental). The rats were anaesthetized, heparinized, and exsanguinated. The chest was opened and the lungs were perfused with diluted autologous blood at a constant flow rate (Q). The pulmonary arterial pressure (Pa) and venous pressure (Pv) were monitored. The properties of the pulmonary vasculature were assessed by measuring baseline vascular resistance, PVR = (Pa-Pv)/Q, segmental pressure gradients (double occlusion technique), pressure-flow relationship, hypoxic pressor response (HPR, 3% O2), and the response to 0.5 microgram bolus of angiotensin II (AII). These were compared with similar measurements on age-matched control animals never exposed to hypoxia. The perfusate hematocrit and gases were not significantly different between the two groups. The PVR normalized to body weight was 30% higher in the experimental groups (p less than 0.005). The double occlusion results (obtained at a flow rate of 13 mL/min) revealed that this increase in resistance was primarily due to the increase in the postcapillary resistance. HPR was primarily in the upstream segment in both groups but was larger in the experimental group. In contrast, the response to AII occurred in both the upstream as well as in the downstream vascular segments and did not differ between the two groups. We conclude that adult rats exposed to hypoxia in the neonatal period have elevated pulmonary vascular resistance and increased vascular reactivity to hypoxia.  相似文献   

16.
Isolated ferret and canine lungs were used to validate a method for assessing determinants of vascular volume in the pulmonary circulation. With left atrial pressure (Pla) constant at 5 mmHg, flow (Q) was raised in steps over a physiological range. Changes in vascular volume (delta V) with each increment in Q were determined as the opposite of changes in perfusion system reservoir weight or from the increase in lung weight. At each level of Q, the pulmonary arterial and left atrial cannulas were simultaneously occluded, allowing all vascular pressures to equilibrate at the same static pressure (Ps), which was equal to the compliance-weighted average pressure in the circulation before occlusion. Hypoxia (inspired PO2 25 Torr) in ferret lungs, which causes intense constriction in arterial extra-alveolar vessels, had no effect on the slope of the Ps-Q relationship, interpreted to represent the resistance downstream from compliance (control 0.025 +/- 0.006 mmHg.ml-1.min, hypoxia 0.030 +/- 0.013). The Ps-axis intercept increased from 8.94 +/- 0.50 to 13.43 +/- 1.52 mmHg, indicating a modest increase in the effective back-pressure to flow downstream from compliant regions. The compliance of the circulation, obtained from the slope of the relationship between delta V and Ps, was unaffected by hypoxia (control 0.52 +/- 0.08 ml/mmHg, hypoxia 0.56 +/- 0.08). In contrast, histamine in canine lungs, which causes constriction in veins, caused the slope of the Ps-Q relationship to increase from 0.013 +/- 0.007 to 0.032 +/- 0.006 mmHg.ml-1.min (P less than 0.05) and the compliance to decrease from 3.51 +/- 0.56 to 1.68 +/- 0.37 ml/mmHg (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We tested the hypothesis that, in canine embolic pulmonary hypertension, upstream transmission of increased left atrial pressure (LAP) is inversely related to the level of the pressure intercept (PI) obtained by extrapolation from the linear pulmonary vascular pressure-flow (P-Q) plot. P-Q coordinates were obtained by varying Q through systemic fistulas. Seven group 1 dogs were embolized with autologous blood clot to produce marked pulmonary hypertension and mean pulmonary arterial pressure (PAP), and PI increased from 15 to 41 mmHg (P less than 0.001) and from 8.8 to 31 mmHg (P less than 0.001), respectively. Before and after embolization we assessed effects of increased LAP, produced by inflation of a left atrial balloon, on PAP at constant Q. Embolization depressed the mean slope of this relationship from 0.78 to 0.16 (P less than 0.001). Subsequently, six group 2 dogs were embolized to produce moderate pulmonary hypertension with a mean PI of 22 mmHg. This value was significantly less than PI in group 1 (P less than 0.01). After embolization, the slope of the PAP-LAP relationship was greater in group 2 than group 1: 0.47 vs. 0.16 (P less than 0.01). We conclude that the upstream transmission of left atrial pressure is inversely related to PI and that marked embolic pulmonary hypertension produces an effective vascular waterfall.  相似文献   

18.
Hematocrit (Hct) of awake hamsters and CD-1 mice was acutely increased by isovolemic exchange transfusion of packed red blood cells (RBCs) to assess the relation between Hct and blood pressure. Increasing Hct 7-13% of baseline decreased mean arterial blood pressure (MAP) by 13 mmHg. Increasing Hct above 19% reversed this trend and caused MAP to rise above baseline. This relationship is described by a parabolic function (R2 = 0.57 and P < 0.05). Hamsters pretreated with the nitric oxide (NO) synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) and endothelial NOS-deficient mice showed no change in MAP when Hct was increased by <19%. Nitrate/nitrite plasma levels of Hct-augmented hamsters increased relative to control and L-NAME treated animals. The blood pressure effect was stable 2 h after exchange transfusion. These findings suggest that increasing Hct increases blood viscosity, shear stress, and NO production, leading to vasodilation and mild hypotension. This was corroborated by measuring A1 arteriolar diameters (55.0 +/- 21.5 microm) and blood flow in the hamster window chamber preparation, which showed statistically significant increased vessel diameter (1.04 +/- 0.1 relative to baseline) and microcirculatory blood flow (1.39 +/- 0.68 relative to baseline) after exchange transfusion with packed RBCs. Larger increases of Hct (>19% of baseline) led blood viscosity to increase >50%, overwhelming the NO effect through a significant viscosity-dependent increase in vascular resistance, causing MAP to rise above baseline values.  相似文献   

19.
We investigated the effects of low temperatures down to approximately 5 degrees C on postcapillary resistance (Rv) and isogravimetric capillary pressure (Pci) in the isolated constant-flow-perfused cat hindlimb to see if a low-temperature-induced increase in Rv and decrease in Pci could lead to an increase in filtration pressure and edema formation. A low-viscosity perfusate (20% cat plasma, 80% albumin-electrolyte solution; viscosity approximately 1 cP) was used. Isoproterenol (10(-7) M) was added to vasodilate the limb and achieve normal microvascular permeability. Rv and Pci were estimated from the slope and zero-flow intercept, respectively, of the straight-line fit to the isogravimetric venous pressure vs. flow data. Rv and Pci were determined in each experiment at an initial 37 degrees C control, at a lowered temperature (30, 23, 15, or 5-10 degrees C), and then at 37 degrees C again. The ratio of Rv at the low temperatures relative to the initial 37 degrees C control increased almost linearly as temperature was reduced. The increase was 3.4 times control at the lowest temperature. Pci decreased significantly from control only in the lowest temperature group where the change was -5.4 mmHg. Analysis of our data with the low-viscosity perfusate shows that the limb can become edematous if temperature is lowered to approximately 5 degrees C unless venous pressure (Pv) is lowered to venous collapse and flow reduced to less than approximately 20 ml.min-1.100g-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In ischemic organs, the protein reflection coefficient (sigma) can be estimated by measuring blood hematocrit (Hct) and protein after increasing static vascular pressure (P(v)). Our original equation for sigma (J Appl Physiol 73: 2616-2622, 1992) assumed a constant vascular volume during convective fluid flux (). In this study, we 1) quantified the rate of vascular volume change (dV/dt) still present in ischemic single ferret lungs after 20 min of P(v) = 30 Torr and 2) developed an equation for sigma that allowed a finite dV/dt. In 25 lungs, we estimated the dV/dt after 20 min at P(v) = 30 Torr by subtracting from the rate of lung weight gain (W(L)). The relationship between (0.15 +/- 0.02 ml/min) and W(L) (0.24 +/- 0.02 g/min) was significant (R = 0.66, P < 0.001), but the slope was <1 (0.41 +/- 0.10, P < 0.05). dV/dt (0.10 +/- 0.02 ml/min) was similar in magnitude to at 20 min. The modified equation for sigma revealed that a finite dV/dt caused the original sigma measurement to underestimate true sigma. A low sigma, high, high baseline Hct, and long filtration time enhanced the error. The error was small, however, and could be minimized by adjusting experimental parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号