首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Wilson's warbler comprises three subspecies separated into two geographic groups: C. p. pusilla that breeds in eastern North America; and C. p. pileolata and C. p. chryseola that breed in western North America. Given the differences between the groups in genetics, morphology, habitat use, and population decline, we tested for ecological niche similarity in both their breeding and wintering distribution using niche modeling based on temperature and precipitation data. We first conducted an inter‐prediction approach considering the percent of summer and winter localities of one group that are predicted by the potential distribution of the alternate group. We also applied a null model approach that compares self‐predictions and pseudoreplicates of each group to indicate similarity, divergence, or indeterminate niche overlap. Finally, we compared ecological distances between and within groups using the Gower similarity equation. We found that the western group had an ecological niche of broader climatic conditions, while the eastern group had a narrower ecological niche. The inter‐prediction approach showed that, for both summering and wintering ranges, ecological niche models of the western group predicted ~50% of the observed distribution of the eastern group, whereas eastern group models predicted < 18% of the western group distribution. The null model approach found that similarity in ecological niches was indeterminate, possibly due to the large area occupied by the two groups; but it suggests a more restricted set of climatic conditions of the eastern group distribution. However, the Gower coefficients demonstrated that the ecological distance between the two geographic groups was larger than the ecological distance within groups, indicating distinct ecological niches. Overall, our results support the hypothesis that the eastern and western groups of Wilson's warbler are two cryptic species; this should be taken into consideration for future analyses, particularly with respect to vulnerability categorization and conservation efforts.  相似文献   

2.
Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are ecologically important trees in eastern North American and eastern Asian forests. The distribution of living species and a rich fossil record of the genus make it an excellent model for understanding the origin and evolution of the eastern Asian–eastern North American floristic disjunction. However, despite the small number of species, relationships within the genus have remained unclear and have not been elucidated using a molecular approach. Here, we integrate data from 48 nuclear genes, fossils, morphology, and ecological niche to resolve species relationships, elucidate its biogeographical history, and investigate the evolution of morphology and ecological niches, aiming at a better understanding of the well‐known EA–ENA floristic disjunction. Results showed that the Central American (CAM) Nyssa talamancana was sister to the remaining species, which were divided among three, rapidly diversified subclades. Estimated divergence times and biogeographical history suggested that Nyssa had an ancestral range in Eurasia and western North America in the late Paleocene. The rapid diversification occurred in the early Eocene, followed by multiple dispersals between and within the Erasian and North American continents. The genus experienced two major episodes of extinction in the early Oligocene and end of Neogene, respectively. The Central American N. talamancana represents a relic lineage of the boreotropical flora in the Paleocene/Eocene boundary that once diversified in western North America. The results supported the importance of both the North Atlantic land bridge and the Bering land bridge (BLB) for the Paleogene dispersals of Nyssa and the Neogene dispersals, respectively, as well as the role of Central America as refugia of the Paleogene flora. The total‐evidence‐based dated phylogeny suggested that the pattern of macroevolution of Nyssa coincided with paleoclimatic changes. We found a number of evolutionary changes in morphology (including wood anatomy and leaf traits) and ecological niches (precipitation and temperature) between the EA–ENA disjunct, supporting the ecological selection driving trait evolutions after geographic isolation. We also demonstrated challenges in phylogenomic studies of lineages with rapid diversification histories. The concatenation of gene data can lead to inference of strongly supported relationships incongruent with the species tree. However, conflicts in gene genealogies did not seem to impose a strong effect on divergence time dating in our case. Furthermore, we demonstrated that rapid diversification events may not be recovered in the divergence time dating analysis using BEAST if critical fossil constraints of the relevant nodes are not available. Our study provides an example of complex bidirectional exchanges of plants between Eurasia and North America in the Paleogene, but “out of Asia” migrations in the Neogene, to explain the present disjunct distribution of Nyssa in EA and ENA.  相似文献   

3.
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard Phrynosoma platyrhinos, a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post‐LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.  相似文献   

4.
A complex of white‐eared opossums (Didelphis spp.) is distributed across three distinct areas of South America, but recent taxonomic treatments have disagreed regarding species limits in the group. We used ecological niche modelling to test whether ecological niches have been conserved or have diverged among the three forms in this group. Differences in combinations of niche and range were clear; however, when hypotheses of accessible areas for each species were considered, coarse‐grained niche dimensions (i.e. climatic dimensions) were seen not to differ across the complex. We discuss implications of these results for taxonomic recognition of species based on geographic and ecological characteristics and the implications of using ENM approaches to setting species limits. We suggest that ENM should be used to explore speciation mechanisms, rather than being applied to questions of setting species limits.  相似文献   

5.
Sequences of chloroplast gene matK and internal transcribed spacers of nuclear ribosomal RNA genes were used for phylogenetic analyses of Aesculus, a genus currently distributed in eastern Asia, eastern and western North America, and southeastern Europe. Phylogenetic relationships inferred from these molecular data are highly correlated with the geographic distributions of species. The identified lineages closely correspond to the five sections previously recognized on the basis of morphology. Ancestral character-state reconstruction, a molecular clock, and fossil evidence were used to infer the origin and biogeographic history of the genus within a phylogenetic framework. Based on the molecular phylogenetic reconstruction of the genus, sequence divergence, and paleontological evidence, we infer that the genus originated during the transition from the Cretaceous to the Tertiary (~65 M.Y.B.P.) at a high latitude in eastern Asia and spread into North America and Europe as an element of the “boreotropical flora”; the current disjunct distribution of the genus resulted from geological and climatic changes during the Tertiary.  相似文献   

6.
The nature and timing of evolution of niche differentiation among closely related species remains an important question in ecology and evolution. The American live oak clade, Virentes, which spans the unglaciated temperate and tropical regions of North America and Mesoamerica, provides an instructive system in which to examine speciation and niche evolution. We generated a fossil‐calibrated phylogeny of Virentes using RADseq data to estimate divergence times and used nuclear microsatellites, chloroplast sequences and an intron region of nitrate reductase (NIA‐i3) to examine genetic diversity within species, rates of gene flow among species and ancestral population size of disjunct sister species. Transitions in functional and morphological traits associated with ecological and climatic niche axes were examined across the phylogeny. We found the Virentes to be monophyletic with three subclades, including a southwest clade, a southeastern US clade and a Central American/Cuban clade. Despite high leaf morphological variation within species and transpecific chloroplast haplotypes, RADseq and nuclear SSR data showed genetic coherence of species. We estimated a crown date for Virentes of 11 Ma and implicated the formation of the Sea of Cortés in a speciation event ~5 Ma. Tree height at maturity, associated with fire tolerance, differs among the sympatric species, while freezing tolerance appears to have diverged repeatedly across the tropical–temperate divide. Sympatric species thus show evidence of ecological niche differentiation but share climatic niches, while allopatric and parapatric species conserve ecological niches, but diverge in climatic niches. The mode of speciation and/or degree of co‐occurrence may thus influence which niche axis plants diverge along.  相似文献   

7.
J. H. Ness  D. F. Morin  I. Giladi 《Oikos》2009,118(12):1793-1804
Ant‐dispersed herbs (myrmecochores) can account for more than one‐third of the stems in the temperate deciduous forests of eastern North America. Because many ant species have been observed collecting the seeds, this interaction is often described as a generalized mutualism. Here, we combine fieldwork and meta‐analyses to test this assumption. Our meta‐analysis demonstrated that Aphaenogaster ants (predominantly A. rudis) collect approximately 74±26% (mean±SD) of the myrmecochorous seeds in eastern North American forests where any encounters with Aphaenogaster were reported, and approximately 61±37% of the seeds in all the eastern forests where any seed collection has been monitored. This remarkable monopolization of seeds is due to at least two factors: 1) Aphaenogaster are significantly more likely to collect the ant‐adapted seeds they discover than are ten other ant genera found in these forests and 2) the densities of Aphaenogaster and myrmecochorous plants are positively correlated at three nested spatial scales (within 20×20 m patches, among patches within a forest, and among 41 forests in the eastern United States). Although other ants can collect seeds, our analyses demonstrate that A. rudis is the primary seed dispersal vector for most of this rich temperate ant‐dispersed flora. The low levels of plant partner diversity for myrmecochores demonstrated here rivals that of tropical ant‐plants (myrmecophytes) and well exceeds that typically observed in temperate plant–frugivore and plant–pollinator mutualisms and myrmecochory in other biomes.  相似文献   

8.
Recent speciation research has generally focused on how lineages that originate in allopatry evolve intrinsic reproductive isolation, or how ecological divergence promotes nonallopatric speciation. However, the ecological basis of allopatric isolation, which underlies the most common geographic mode of speciation, remains poorly understood and largely unstudied. Here, we explore the ecological and evolutionary factors that promote speciation in Desmognathus and Plethodon salamanders from temperate eastern North America. Based on published molecular phylogenetic estimates and the degree of geographic range overlap among extant species, we find strong evidence for a role for geographic isolation in speciation. We then examine the relationship between climatic variation and speciation in 16 sister-taxon pairs using geographic information system maps of climatic variables, new methods for modeling species' potential geographic distributions, and data on geographic patterns of genetic variation. In contrast to recent studies in tropical montane regions, we found no evidence for parapatric speciation along climatic gradients. Instead, many montane sister taxa in the Appalachian Highlands inhabit similar climatic niches and seemingly are allopatric because they are unable to tolerate the climatic conditions in the intervening lowlands. This temporal and spatial-ecological pattern suggests that niche conservatism, rather than niche divergence, plays the primary role in promoting allopatric speciation and montane endemism in this species-rich group of vertebrates. Our results demonstrate that even the relatively subtle climatic differences between montane and lowland habitats in eastern North America may play a key role in the origin of new species.  相似文献   

9.
Nine sandfly species (Diptera: Psychodidae) are suspected or proven vectors of Leishmania spp. in the North and Central America region. The ecological niches for these nine species were modelled in three time periods and the overlaps for all time periods of the geographic predictions (G space), and of ecological dimensions using pairwise comparisons of equivalent niches (E space), were calculated. Two Nearctic, six Neotropical and one species in both bioregions occupied a reduced number of distribution areas. The ecological niche projections for most sandfly species other than Lutzomyia shannoni and Lutzomyia ovallesi have not expanded significantly since the Pleistocene. Only three species increase significantly to 2050, whereas all others remain stable. Lutzomyia longipalpis shared a similar ecological niche with more species than any other, although both L. longipalpis and Lutzomyia olmeca olmeca had conserved distributions over time. Climate change, at both regional and local levels, will play a significant role in the temporal and spatial distributions of sandfly species.  相似文献   

10.
Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co‐occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic ranges. Our results suggest that differential responses of populations and species must be incorporated into projections of range shifts in a changing climate.  相似文献   

11.

Aim

Abiotic conditions are key components that determine the distribution of species. However, co‐occurring species can respond differently to the same factors, and determining which climate components are most predictive of geographic distributions is important for understanding community response to climate change. Here, we estimate and compare climate niches of ten subdominant, herbaceous forb species common in sagebrush steppe systems, asking how niches differ among co‐occurring species and whether more closely related species exhibit higher niche overlap.

Location

Western United States.

Methods

We used herbarium records and ecological niche modelling to estimate area of occupancy, niche breadth and overlap, and describe characteristics of suitable climate. We compared mean values and variability in summer precipitation and minimum temperatures at occurrence locations among species, plant families, and growth forms, and related estimated phylogenetic distances to niche overlap.

Results

Species varied in the size and spatial distribution of suitable climate and in niche breadth. Species also differed in the variables contributing to their suitable climate and in mean values, spatial variation and interannual variation in highly predictive climate variables. Only two of ten species shared comparable climate niches. We found family‐level differences associated with variation in summer precipitation and minimum temperatures, as well as in mean minimum temperatures. Growth forms differed in their association with variability in summer precipitation and minimum temperatures. We found no relationship between phylogenetic distance and niche overlap among our species.

Main conclusions

We identified contrasting climate niches for ten Great Basin understorey forbs, including differences in both mean values and climate variability. These estimates can guide species selection for restoration by identifying species with a high tolerance for climate variability and large climatic niches. They can also help conservationists to understand which species may be least tolerant of climate variability, and potentially most vulnerable to climate change.
  相似文献   

12.
Aim We investigated the phylogeography, geographical variation in leaf morphology, freezing tolerance and climatic niches of two widespread evergreen sister oak species (Quercus) in the series Virentes. Location South‐eastern USA, Mexico and Central America. Methods Nuclear microsatellites and non‐recombining nuclear and chloroplast DNA sequences were obtained from trees throughout the range of two sister lineages of live oaks, represented by Quercus virginiana in the temperate zone and Q. oleoides in the tropics. Divergence times were estimated for the two major geographical and genetic breaks. Differentiation in leaf morphology, analysed from field specimens, was compared with the molecular data. Freezing sensitivities of Q. virginiana and Q. oleoides populations were assessed in common garden experiments. Results The geographical break between Q. virginiana and Q. oleoides was associated with strong genetic differentiation of possible early Pleistocene origin and with differentiation in freezing sensitivity, climatic envelopes and leaf morphology. A second important geographical and genetic break within Q. oleoides between Costa Rica and the rest of Central America showed a mid‐Pleistocene divergence time and no differentiation in leaf morphology. Population genetic differentiation was greater but genetic diversity was lower within the temperate Q. virginiana than within the tropical Q. oleoides, and genetic breaks largely corresponded to breaks in leaf morphology. Main conclusions Two major breaks, one between Mexico and the USA at the boundary of the two species, and a more recent one within Q. oleoides between Honduras and Costa Rica, implicate climatic changes as potential causes. The latter break may be associated with the formation of the Cordillera de Guanacaste, which was followed by seasonal changes in precipitation. In the former case, an ‘out of the tropics’ scenario is hypothesized, in which the acquisition of freezing tolerance in Q. virginiana permitted colonization of and expansion in the temperate zone, while differences in climatic tolerances between the species limited secondary contact. More pronounced Pleistocene changes in climate and sea level in the south‐eastern USA relative to coastal Mexico and Central America may explain the greater population differentiation within temperate Q. virginiana and greater genetic diversity in tropical Q. oleoides. These patterns are predicted to hold for other taxa that span temperate and tropical zones of North and Central America.  相似文献   

13.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

14.
By combining data from a variety of sources we explore patterns of evolution and speciation in Nucella, a widely studied genus of shallow-water marine neogastropods. We present a hypothesis of phylogenetic relationships for all of the currently recognized species of northern hemisphere Nucella, based on an analysis of 718 base pairs of nucleotide sequence from the mitochondrial cytochrome b gene. The order of appearance of species in the fossil record is congruent with this hypothesis. The topology of the inferred phylogeny of Nucella, coupled with ecological, morphological, and fossil evidence, was used to address three main questions: (1) At what time and by which route was the North Atlantic invaded from the North Pacific compared to prior studies of the trans-Arctic interchange? (2) Do patterns of molecular variation within species corroborate the importance of climatic cycles in driving speciation in north temperate marine animals? (3) Was radiation in the direction of increased or decreased ecological specialization, body size, or vulnerability to predation? Molecular evidence confirmed that the sole North Atlantic species, N. lapillus, arose from a North Pacific ancestor. Biogeographic and paleontological evidence supported the dispersal of Nucella, and perhaps other interchange species, via the Eurasian Arctic. Rather intriguingly, the linkage of N. lapillus to a western as opposed to eastern Pacific clade, and the biogeographic origins of the eastern Pacific species, parallel closely similar patterns observed in another genus of rocky-shore gastropods, Littorina. This congruence, in conjunction with information on the climatic and geographic histories of the region, as well as the geographic arrangement of mtDNA haplotypes within Nucella species, supports a model of speciation in Nucella driven by cycles of climatic amelioration and deterioration that began during the Miocene. Calibrations from the fossil record of Nucella suggest that third position transitions and transversions accrue at a rate of 3–4% and 0.5% respectively per million yr. This supports an early participation by Nucella in the trans-Arctic interchange, as suggested by paleobiogeographic studies. Consistent with the unstable taxonomic history of species of Nucella, we found few nonmolecular traits to be phylogenetically informative. Among North Pacific species, more recently derived species (N. canaliculata and the N. emarginata clade) were more ecologically specialized (narrower diet and habitat range). Consistent with extensive intraspecific variation, shell traits were quite labile evolutionarily: neither overall size nor development of antipredatory traits exhibited consistent evolutionary trends over the history of the genus. Nurse eggs (unfertilized eggs consumed by developing embryos) were an ancestral trait that was lost evolutionarily in the two clades that also exhibited increased body size, suggesting that these two life-history traits may be coupled. The reduced number of chromosomes in N. lapillus is clearly a derived state and is consistent with White's (1978) observations on chromosome evolution in other clades.  相似文献   

15.
Fir forests (Abies, Pinaceae) are dominant in temperate regions of North America; however, they have experienced high degradation rates that can threaten their long-term continuity. This study aimed to identify the priority areas for the conservation of the genus Abies in North America. First, we modeled the species distribution of the 17 native species through ecological niche modeling, considering 21 environmental variables. Then, we defined the priority areas through multi-criteria analysis, considering the species richness, geographic rareness, irreplaceability, habitat degradation, and risk extinction. We also built six scenarios, giving more priority to each criterion. Finally, we identified the proportion of the extent of the priority areas covered by protected areas. Elevation, precipitation seasonality, and winter precipitation influenced the distribution of most of the Abies species. When considering equal weights to each criterion, the priority areas summed up 6% of the total extent covered by the Abies species in North America. Most priority areas were located on the West Coast of the United States, the Eastern Sierra Madre, Southern Sierra Madre, Sierras of Chiapas and Central America, and the Trans-Mexican Volcanic Belt ecoregions. In these ecoregions, the Abies species are restricted to small areas facing high degradation levels. Only 16% of the area covered by the Abies species in North America is protected, mainly under restrictive schemes such as National Parks and Wilderness Areas. The priority areas identified could be the basis for establishing or enlarging protected areas. The preservation of the genus Abies could also maintain other ecological features and processes such as biodiversity, forest resources, and environmental services.  相似文献   

16.
The effects of recent climate changes on earth ecosystems are likely among the most important ecological concerns in human history. Good bioindicators are essential to properly assess the magnitude of these changes. In the last decades, studies have suggested that the morph proportion of the eastern red‐backed salamander (Plethodon cinereus), one of the most widely distributed and abundant vertebrate species in forests of eastern North America, could be used as a proxy for monitoring climate changes. Based on new discoveries in the northern areas of the species' range and on one of the largest compilation ever made for a vertebrate in North America (236 109 observations compiled from 1880 to 2013 in 1148 localities), we demonstrate however that climatic and geographic variables do not influence the colour morph proportions in P. cinereus populations. Consequently, we show that the use of colour morph proportions of this species do not perform as an indicator of climate change. Our findings indicate that bioindicator paradigms can be significantly challenged by new ecological research and more representative databases.  相似文献   

17.
Twenty‐three Aphaenogaster species (Hymenoptera: Formicidae) occur in North America. While morphology and ecology define most species, the species limits of a group in the Eastern United States are unclear. In particular, the morphological and behavioural characters of A. carolinensis, A. picea and A. rudis overlap. These observations suggest that these three species are not monophyletic. We therefore tested the monophyly of Aphaenogaster in the context of molecular phylogenetic analyses. We used DNA data from five genes: CO1, CAD, EF1αF2, long‐wavelength rhodopsin and wingless, to reconstruct phylogenies for 44 Aphaenogaster and outgroup species. In the resulting trees, reconstructed using parsimony and Bayesian inference, species boundaries associated with well‐supported monophyletic clades of individuals in most of the 23 North American Aphaenogaster collected from multiple locations. However, some clades were unresolved, and both A. picea and A. rudis were not monophyletic. Although this may indicate that clades of multiple species represent fewer but morphologically varied species, given the short branch lengths, the lack of resolution may reflect the fact that these ants have recently radiated, and a lack of gene lineage sorting explains the non‐monophyly of species. Additional biological information concerning pre‐ and postmating barriers is needed before a complete revision of species boundaries for Aphaenogaster.  相似文献   

18.
Aim We investigated patterns of species richness and composition of the aquatic food web found in the liquid‐filled leaves of the North American purple pitcher plant, Sarracenia purpurea (Sarraceniaceae), from local to continental scales. Location We sampled 20 pitcher‐plant communities at each of 39 sites spanning the geographic range of S. purpurea– from northern Florida to Newfoundland and westward to eastern British Columbia. Methods Environmental predictors of variation in species composition and species richness were measured at two different spatial scales: among pitchers within sites and among sites. Hierarchical Bayesian models were used to examine correlates and similarities of species richness and abundance within and among sites. Results Ninety‐two taxa of arthropods, protozoa and bacteria were identified in the 780 pitcher samples. The variation in the species composition of this multi‐trophic level community across the broad geographic range of the host plant was lower than the variation among pitchers within host‐plant populations. Variation among food webs in richness and composition was related to climate, pore‐water chemistry, pitcher‐plant morphology and leaf age. Variation in the abundance of the five most common invertebrates was also strongly related to pitcher morphology and site‐specific climatic and other environmental variables. Main conclusions The surprising result that these communities are more variable within their host‐plant populations than across North America suggests that the food web in S. purpurea leaves consists of two groups of species: (1) a core group of mostly obligate pitcher‐plant residents that have evolved strong requirements for the host plant and that co‐occur consistently across North America, and (2) a larger set of relatively uncommon, generalist taxa that co‐occur patchily.  相似文献   

19.
Emerging diseases in wildlife pose challenges for conservation due to their usually rapid spread and high cause of mortality. The transmission of these diseases is a complex ecological process that involves interactions between groups of individuals, particularly in gregarious species. White-nose syndrome, caused by the fungus Pseudogymnoascus destructans, is increasingly infecting species of vespertilionid North American bats causing, in some cases, high population mortality. In this study, we modeled ecological niches projected as potential distributions for three strains of P. destructans (Asian, European and North American) and a group of species of verpertilionid bats in North America. Our model showed that the ecological niches of North American and Asian fungi strains are projected to expand into new geographic areas, with statistical significance between the two strains. In addition, our model identified the presence of all three strains of fungi in areas where the fungus has previously been documented as well as new suitable climatic areas for the establishment of P. destructans in North America: large regions of the central USA and highlands of Mexico in the Peninsula of Baja California, the Sierra Madre Occidental and Oriental, and Transvolcanic Mexican Belt. Our models identified 10 species of vespertilionid bats distributed similarly to P. destructans. Bats had a high risk of infection with WSN and a strong likelihood of dispersing the fungus.  相似文献   

20.
The determinants of a species' geographic distribution are a combination of both abiotic and biotic factors. Environmental niche modeling of climatic factors has been instrumental in documenting the role of abiotic factors in a species' niche. Integrating this approach with data from species interactions provides a means to assess the relative roles of abiotic and biotic components. Here, we examine whether the high host specificity typically exhibited in the active pollination mutualism between yuccas and yucca moths is the result of differences in climatic niche requirements that limit yucca moth distributions or the result of competition among mutualistic moths that would co‐occur on the same yucca species. We compared the species distribution models of two Tegeticula pollinator moths that use the geographically widespread plant Yucca filamentosa. Tegeticula yuccasella occurs throughout eastern North America whereas T. cassandra is restricted to the southeastern portion of the range, primarily occurring in Florida. Species distribution models demonstrate that T. cassandra is restricted climatically to the southeastern United States and T. yuccasella is predicted to be able to live across all of eastern North America. Data on moth abundances in Florida demonstrate that both moth species are present on Y. filamentosa; however, T. cassandra is numerically dominant. Taken together, the results suggest that moth geographic distributions are heavily influenced by climate, but competition among pollinating congeners will act to restrict populations of moth species that co‐occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号