首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Mesenchymal stem cells(MSCs)have the potential for use in cell-based regenerative therapies.Currently,hundreds of clinical trials are using MSCs for the treatment of various diseases.However,MSCs are low in number in adult tissues;they show heterogeneity depending upon the cell source and exhibit limited proliferative potential and early senescence in in vitro cultures.These factors negatively impact the regenerative potential of MSCs and therefore restrict their use for clinical applications.As a result,novel methods to generate induced MSCs(iMSCs)from induced pluripotent stem cells have been explored.The development and optimization of protocols for generation of iMSCs from induced pluripotent stem cells is necessary to evaluate their regenerative potential in vivo and in vitro.In addition,it is important to compare iMSCs with primary MSCs(isolated from adult tissues)in terms of their safety and efficacy.Careful investigation of the properties of iMSCs in vitro and their long term behavior in animals is important for their translation from bench to bedside.  相似文献   

2.
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by “bottom-up” approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.  相似文献   

3.
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.  相似文献   

4.
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.  相似文献   

5.
6.
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.  相似文献   

7.
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.  相似文献   

8.
间充质干细胞(mesenchymal stem cells,MSCs)具备多向分化、免疫调控和靶向迁移的能力,在再生医学领域一直备受关注。但是,随着供体年龄的增长和体外培养时间的延长,MSCs通常表现出衰老特征。MSCs衰老以及功能衰退被认为是机体衰老和相关退行性疾病发展的重要诱发因素,同时也制约着MSCs在再生医学领域中的应用。自噬是溶酶体依赖途径介导细胞内物质的降解和再循环过程,是真核细胞的非核(细胞质)部分得以更新的有效途径,对维持细胞稳态至关重要,是调节MSCs衰老的潜在调控靶标。对MSCs衰老的表型特征、功能变化和分子机制,以及自噬与衰老之间的关系进行综述,为促进MSCs临床应用提供理论基础。  相似文献   

9.
Mesenchymal stem cells (MSCs) are the most frequently used stem cells in clinical trials due to their easy isolation from various adult tissues, their ability of homing to injury sites and their potential to differentiate into multiple cell types. However, the realization that the beneficial effect of MSCs relies mainly on their paracrine action, rather than on their engraftment in the recipient tissue and subsequent differentiation, has opened the way to cell-free therapeutic strategies in regenerative medicine. All the soluble factors and vesicles secreted by MSCs are commonly known as secretome. MSCs secretome has a key role in cell-to-cell communication and has been proven to be an active mediator of immune-modulation and regeneration both in vitro and in vivo. Moreover, the use of secretome has key advantages over cell-based therapies, such as a lower immunogenicity and easy production, handling and storage. Importantly, MSCs can be modulated to alter their secretome composition to better suit specific therapeutic goals, thus, opening a large number of possibilities. Altogether these advantages now place MSCs secretome at the center of an important number of investigations in different clinical contexts, enabling rapid scientific progress in this field.  相似文献   

10.
Investigators use both in vitro and in vivo models to better understand infectious disease processes. Both models are extremely useful in research, but there exists a significant gap in complexity between the highly controlled reductionist in vitro systems and the largely undefined, but relevant variability encompassing in vivo animal models. In an effort to understand how Salmonella initiates disease at the intestinal epithelium, in vitro models have served a useful purpose in allowing investigators to identify molecular mechanisms responsible for Salmonella invasion of host cells and stimulation of host inflammatory responses. Identification of these molecular mechanisms has generated hypotheses that are now being tested using in vivo models. Translating the in vitro findings into the context of an animal model and subsequently to human disease remains a difficult challenge for any disease process.  相似文献   

11.
12.
13.
The development of “mini-guts” organoid originates from the identification of Lgr5+ intestinal stem cells (ISCs) and circumambient signalings within their specific niche at the crypt bottom. These in vitro self-renewing “mini-guts”, also named enteroids or colonoids, undergo perpetual proliferation and regulated differentiation, which results in a high-performance, self-assembling and physiological organoid platform in diverse areas of intestinal research and therapy. The triumphant reconstitution of ISC niche in vitro also relies on Matrigel, a heterogeneous sarcoma extract. Despite the promising prospect of organoids research, their expanding applications are hampered by the canonical culture pattern, which reveals limitations such as inaccessible lumen, confine scale, batch to batch variation and low reproducibility. The tumor-origin of Matrigel also raises biosafety concerns in clinical treatment. However, the convergence of breakthroughs in cellular biology and bioengineering contribute to multiform reconstitution of the ISC niche. Herein, we review the recent advances in the microfabrication of intestinal organoids on hydrogel systems.  相似文献   

14.
Transient co-transfection of receptor cDNA and suitable reporter genes was used to study human glucocorticoid receptor (hGR) function in a neutral mammalian cell background. A variety of natural and synthetic steroids were analyzed for their ability to activate gene expression through the hGR and to bind to extracts of cells expressing the hGR cDNA. There was very good correlation between these two in vitro parameters for these compounds. Furthermore, correlation of these data with reported in vivo anti-inflammatory potencies was surprisingly close, with two exceptions. The in vitro data suggest an explanation for the discrepant compounds, consistent with published data on their metabolic fate in vivo. The co-transfection assay has utility as a quantitative predictor of in vivo glucocorticoid pharmacology.  相似文献   

15.
黑色素是一种广泛存在于动物、植物、细菌及真菌中的生物色素,具有多种生物功能及良好的生物活性。黑木耳以“黑”出名,其富含的黑色素具有广阔开发应用价值。本研究旨在评价黑木耳黑色素对急性肝损伤的改善作用。首先应用傅里叶红外光谱初步对提取的黑木耳黑色素进行鉴定,再通过DPPH自由基及羟基自由基清除实验证实提取的黑木耳黑色素体外抗氧化能力,并进一步以四氯化碳致小鼠急性肝损伤为模型,通过检测血清酶指标、肝功指标的变化及病理切片情况,来评价黑木耳黑色素体内抗氧化及保肝效果。结果表明,提取的黑木耳黑色素具有黑色素特征的官能团结构和良好的体外抗氧化能力,对DPPH自由基和羟基(OH)自由基清除的EC50分别为0.0887mg/mL、2.2030mg/mL;动物体内实验中,与模型组对比,给药组(黑木耳黑色素)的小鼠血清中ALT、AST含量显著降低(P<0.01),肝脏中MDA含量显著降低(P<0.01)和SOD活性显著升高(P<0.01),并且肝细胞病理状态明显改善。本文报道了黑木耳黑色素在体内能有效改善四氯化碳诱导的小鼠肝损伤,为黑木耳的功能产品开发提供了新思路和研究基础。  相似文献   

16.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

17.
Cytokines produced by immune-activated testicular interstitial macrophages (TIMs) may play a fundamental role in the local control mechanisms of testosterone biosynthesis in Leydig cells. We investigated whether in vivo immune-activation of TIMs can modulate Leydig cell steroidogenesis. To immune activate TIMs in vivo, mice were injected intraperitoneally (i.p.) with lipopolysaccharide (LPS, 6 mg/kg). TIMs and Leydig cells were purified for RNA analysis. LPS treatment resulted in a 47-fold increase in interleukin-1β (IL-1β) mRNA in TIMs. P450c17 mRNA levels in the Leydig cells from the same animals, decreased to less than 10% compared to control. The effect of LPS on IL-1β and P450c17 mRNA levels was reversible on both TIMs and Leydig cells, respectively. To determine if the effect of LPS on P450c17 was mediated by a possible decrease in pituitary LH secretion, mice were co-injected with LPS and hCG. Treatment with hCG did not change the effect observed with LPS alone, in TIMs or in Leydig cells. In vitro, LPS treatment of TIMs resulted in marked induction of IL-1β mRNA expression. In parallel, in vitro treatment of Leydig cells with recombinant IL-1 resulted in a dose-dependent inhibition of P450c17 mRNA expression and testosterone production. These data demonstrate that LPS treatment, in vivo and in vitro, induced IL-1 gene expression in TIMs, and that IL-1 inhibits P450c17 mRNA in vitro. Therefore, we suggest that immune-activation of TIMs might have caused the observed inhibition of P450c17 gene expression in Leydig cells in vivo.  相似文献   

18.
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.  相似文献   

19.
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.  相似文献   

20.
CGS 20267 is a new non-steroidal compound which potently inhibits aromatase in vitro (IC50 of 11.5 nM) and in vivo (ED50 of 1–3 μg/kg p.o.). CGS 20267 maximally inhibits estradiol production in vitro in LH-stimulated hamster ovarian tissue at 0.1 μM with an IC50 of 0.02 μM and does not significantly affect progesterone production up to 350 μM. In ACTH-stimulated rat adrenal tissue in vitro, aldosterone production was inhibited with an IC50 of 210 μM (10,000 times higher than the IC50 for estradiol production); no significant effect on corticosterone production was seen at 350 μM. In vivo, in ACTH-treated rats, CGS 20267 does not affect plasma levels of corticosterone or aldosterone at a dose of 4 mg/kg p.o. (1000 times higher than the ED50 for aromatase inhibition in vivo). In adult female rats, a 14-day treatment with 1 mg/kg p.o. daily, completely interrupts ovarian cyclicity and suppresses uterine weight to that seen 14 days after ovariectomy. In adult female rats bearing estrogen-dependent DMBA-induced mammary tumors, 0.1 mg/kg p.o. given daily for 42 days caused almost complete regression of tumors present at the start of treatment. Thus compared to each other, CGS 16949A and CGS 20267 are both highly potent in inhibiting estrogen biosynthesis in vitro and in vivo. The striking difference between them is that unlike CGS 16949A, CGS 20267 does not affect adrenal steroidogenesis in vitro or in vivo, at concentrations and doses several orders of magnitude higher than those required to inhibit estrogen biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号