首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Generic features associated with the adsorption of proteins on solid surfaces are reviewed within the framework of the hydrophobic-polar (HP) lattice protein model. The thermodynamic behaviour and structural properties of various HP protein sequences interacting with attractive surfaces have been studied using extensive Wang–Landau sampling with different types of surfaces, each of which attracts either: all monomers, only hydrophobic (H) monomers or only polar (P) monomers, respectively. Consequently, different types of folding behaviour occur for varied surface strengths. Analysis of the combined patterns of various structural observables, e.g. the derivatives of the number of interaction contacts, together with the specific heat, leads to the identification of fundamental categories of folding and transition hierarchies. We also inferred a connection between the transition categories and the relative surface strengths, i.e. the ratios of the surface attractive strengths to the intra-chain attraction among H monomers. Thus, we believe that the folding hierarchies and identification scheme are generic for different HP sequences interacting with attractive surfaces, regardless of the chain length, sequence or surface attraction.  相似文献   

2.
Cell adhesion on biomaterial surfaces and the vitality of anchorage dependent cells is affected by several parameters of an adsorbate layer which is intentionally or spontaneously formed. Surface pre-treatments and several conditioning steps prior and during to the cell/biomaterial contact affect the composition, orientation, quantity and viscoelasticity of the interfacing layer between cells and biomaterial. This work was performed to elucidate the response of cells on two modified biomaterial surfaces based on protein or carbohydrate adsorbates: (a) Masked UV irradiations opened a simple route to obtain chemically patterned substrates controlling serum protein adsorption and cell adhesion. It is possible to achieve structures of subcellular size and to produce immobilized gradients. In order to examine the protein matrix deposited on these substrates we applied a quartz microbalance technique (QCM-D) capable to extract viscoelastic data in addition to the mass uptake during plasma protein deposition. It was found that the quantity and viscosity of surface bound albumin is lowered when the surface is modified (patterned) by UV exposure. Hence, the UV modification promotes the competitive adsorption of cell adhesion proteins from the media or upon secretion by the cells and yields to the observed cell patterns. (b) Another tissue engineering technique, using immobilized, modified and/or cross linked hyaluronic acid (HA), an important extra cellular matrix component in vivo, is also examined by QCM-D. Our data demonstrate that HA can be modified by an activation with a carbodiimide, followed by the application of an alpha,omega-bisamino polyethyleneglycol. The QCM-D data can be interpreted as a stiffening of the HA layer combined with the release of hydration water. Further, the hydration state and the viscoelastic behaviour of surface bound ultrathin HA hydrogels was examined. Quantification of viscoelastic parameters of thin films of ECM by QCM-D is valuable for the interpretation of durotaxis, describing effects of mechanical substrate parameters on the adhesion and motility of cells.  相似文献   

3.
Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology. Here, we describe a general method for the creation of well-defined protein patterns for cellular studies.(5) This process involves three steps: the production of a patterned master using photolithography, the creation of a PDMS stamp, and microcontact printing of a gold-coated substrate. Once patterned, these cell culture substrates are capable of confining proteins and/or cells (primary cells or cell lines) to the pattern. The use of self-assembled monolayer chemistry allows for precise control over the patterned protein/cell adhesive regions and non-adhesive regions; this cannot be achieved using direct protein stamping. Hexadecanethiol, the long chain alkane thiol used in the microcontact printing step, produces a hydrophobic surface that readily adsorbs protein from solution. The glycol-terminated thiol, used for backfilling the non-printed regions of the substrate, creates a monolayer that is resistant to protein adsorption and therefore cell growth.(6) These thiol monomers produce highly structured monolayers that precisely define regions of the substrate that can support protein adsorption and cell growth. As a result, these substrates are useful for a wide variety of applications from the study of intercellular behavior(7) to the creation of microelectronics.(8) While other types of monolayer chemistry have been used for cell culture studies, including work from our group using trichlorosilanes to create patterns directly on glass substrates,(9) patterned monolayers formed from alkane thiols on gold are straight-forward to prepare. Moreover, the monomers used for monolayer preparation are commercially available, stable, and do not require storage or handling under inert atmosphere. Patterned substrates prepared from alkane thiols can also be recycled and reused several times, maintaining cell confinement.(10).  相似文献   

4.
The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and chemical properties of the material surface can be advantageously used for constructing patterned surfaces. Micropatterned surfaces enable regionally selective cell adhesion and directed growth, which can be utilized in tissue engineering, in constructing microarrays and in biosensorics. Nanopatterned surfaces are an effective tool for manipulating the type, number, spacing and distribution of ligands for cell adhesion receptors on the material surface. As a consequence, these surfaces are able to control the size, shape, distribution and maturity of focal adhesion plaques on cells, and thus cell adhesion, proliferation, differentiation and other cell functions.  相似文献   

5.
Protein patterning has become an important topic as advances are made in biologically integrated devices and protein chip technology. Versatile and effective patterning requires substrates that can be quantified, with active presentation of proteins and control over protein density and orientation. Herein we describe a model system and the use of low-energy electron beam lithography to pattern molecular templates for immobilization of antibodies through ligand recognition. The templates were patterned over a background of poly(ethylene glycol) (PEG) modified silicon oxide (SiO x ). These substrates were exposed to a low-voltage (2 keV) electron beam to remove PEG selectively from exposed regions. These regions were then functionalized with a dinitrophenyl (DNP) ligand and tested for specific binding of fluorescently labeled anti-DNP antibodies. The PEG modified regions in conjunction with ligand-presenting regions in the patterned arrays substantially reduces non-specific adsorption of proteins, yielding a specific/nonspecific ratio of approx 10. The surface coverage of the biologically active DNP groups on SiO x and the amount of immobilized antibody on DNP were measured with a fluorescence-based, enzyme-linked immunosorbent assay. The specificity of the interaction between DNP ligand and fluorescently labeled anti-DNP antibodies was evaluated with fluorescence microscopy. This approach to patterning of molecular templates and assays for quantification are generally applicable to immobilization of any ligand-receptor pair on a wide range of substrates.  相似文献   

6.
Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.  相似文献   

7.
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were also carried out using an in situ UV-Vis spectrophotometric technique. The cellulose accessibilities measured by the solute exclusion and a cellulose-binding module (CBM)-containing green fluorescent protein (TGC) adsorption methods correlate well for both sets of samples. The substrate enzymatic digestibilities (SEDs) of the hornified substrates are proportional to the measured cellulose accessibilities. Approximately over 90% of the SED was contributed by the accessible pore surfaces of the hornified substrates, suggesting that the substrate external surface plays a minor role contributing to cellulose accessibility and SED. The cellulose accessibilities of the pretreated substrates correlated well with the amounts of cellulase adsorbed. The SEDs of these substrates directly correlated with the amounts of adsorbed cellulase.  相似文献   

8.
Biomimetic micro-patterned surfaces of three S-layer (fusion) proteins, wild type (SbpA), enhanced green fluorescence protein (SbpA-EGFP) and streptavidin (SbpA-STV), were built by microcontact printing of poly-L-lysine grafted polyethylene glycol (PLL-g-PEG). The functionality of the adsorbed proteins was studied with atomic force microscopy and fluorescence microscopy. Atomic force microscopy (AFM) measurements showed that wild-type SbpA recrystallized on PLL-g-PEG free areas, while fluorescent properties of SbpA-EGFP and the interaction of SbpA-streptavidin heterotetramers with biotin were not affected due to the adsorption on the micro patterned substrates.  相似文献   

9.
Biomaterials that prevent nonspecific protein adsorption and cell adhesion are of high relevance for diverse applications in tissue engineering and diagnostics. One of the most widely applied materials for this purpose is Poly(ethylene glycol) (PEG). We have investigated how micrometer line topography and substrate elasticity act upon the antiadhesive properties of PEG-based hydrogels. In our studies we apply bulk hydrogel cross-linked from star-shaped poly(ethylene oxide-stat-propylene oxide) macromonomers. Substrate surfaces were topographically patterned via replica molding. Additionally, the mechanical properties were altered by variations in the cross-linking density. Surface patterns with dimensions in the range of the cells' own size, namely 10 μm wide grooves, induced significant cell adhesion and spreading on the Acr-sP(EO-stat-PO) hydrogels. In contrast, there was only little adhesion to smaller and larger pattern sizes and no adhesion at all on the smooth substrates, regardless the rigidity of the gel. The effect of varied substrate stiffness on cell behavior was only manifest in combination with topography. Softer substrates with line patterns lead to significantly higher cell adhesion and spreading than stiff substrates. We conclude that the physical and mechanical surface characteristics can eliminate the nonadhesive properties of PEG-based hydrogels to a large extent. This has to be taken into account when designing surfaces for biomedical application such as scaffolds for tissue engineering which rely on the inertness of PEG.  相似文献   

10.
The influence of fibronectin (Fn) coated surfaces patterned with poly(ethylene glycol) microgels having inter-gel spacings between 0.5 and 3.0 μm on the adhesion of Staphylococcus aureus strains with and without Fn-binding proteins and cellular adhesion/spreading was investigated. Quantitative force measurements between a S. aureus cell and a patterned surface showed that the adhesion force between the bacterium and the patterned surface increased substantially after Fn adsorption, regardless of the strain used, but decreased with decreasing inter-gel spacing. In flow-chamber experiments, the Fn-binding strain adhered at a higher rate after Fn adsorption than the strain lacking Fn-binding proteins. In both cases, the adhesion rates decreased with decreasing inter-gel spacing. Osteoblast-like cells could bind to patterned surfaces despite the microgels, and adsorbed Fn substantially amplified this effect. Even under highly non-adhesive conditions associated with closely spaced microgels, adsorbed Fn preserves a window of inter-gel spacing around 1 μm where the adhesion of staphylococcal cells is hindered while cells can still adhere and spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号