首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

2.
Grooming is a proactive method to keep a ship’s hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.  相似文献   

3.
Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents.  相似文献   

4.
The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m × 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.  相似文献   

5.
Our screening of plants showed that Cyperus alternifolius (Umbrella papyrus) had the highest efficiency removal in real wastewater containing monoethanolamine—higher than Echinodorus cordifolius (Creeping Burrhead), Thalia geniculata (Alligator Flag), Acorus calamus (Sweet Flag), and Dracaena sanderiana (Lucky Bamboo). Therefore, this research studied the degradation of monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) by C. alternifolius. Plants could degrade TEA into DEA, then into MEA, and then further into acetic acid. The accumulation of ethanolamines was found mainly in plant stems, which had the highest biomass. This demonstrated that the molecular size is closely related to a diffusion coefficient that affects the removal rate through plant bodies. A smaller molecular weight—MEA (MW = 61.08 g mol?1)—was taken up the fastest, followed by DEA (MW = 105.14 g mol?1) and TEA (MW = 149.19 g mol?1), the highest molecular weight. The plants’ toxicity when exposed to ethanolamines elucidated that MEA had the highest toxicity, followed by DEA and TEA. In addition, the application of C. alternifolius in monoethanolamine-contaminated wastewater revealed that plant could completely uptake MEA at day 5 from an initial MEA concentration of 18 mM. The result indicated that C. alternifolius has the potential to remove ethanolamines and can be applied to ethanolamine-contaminated wastewater.  相似文献   

6.
Type II methanotrophs produce polyhydroxybutyrate (PHB), while Type I methanotrophs do not. A laboratory-scale fluidized bed reactor was initially inoculated with a Type II Methylocystis-like dominated culture. At elevated levels of dissolved oxygen (DO, 9 mg/L), pH of 6.2–6.5 with nitrate as the N-source, a Methylobacter-like Type I methanotroph became dominant within the biofilms which did not produce PHB. A shift to biofilms capable of PHB production was achieved by re-inoculating with Type II Methylosinus culture, providing dissolved N2 as the N-source, and maintaining a low influent DO (2.0 mg/L). The resulting biofilms contained both Types I and II methanotrophs. Batch tests indicated that biofilm samples grown with N2 became dominated by Type II methanotrophs and produced PHB. Enrichments with nitrate or ammonium were dominated by Type I methanotrophs without PHB production capability. The key selection factors favoring Type II were N2 as N-source and low DO.  相似文献   

7.
The objectives of this study were to investigate the start-up removal of pharmaceutical compounds diclofenac and sulfamethoxazole in microcosm downflow constructed wetlands and their effect on the performance of the studied constructed wetlands, and also to assess the effect of plants on the removal of these compounds. The experimental system that was used in this 86-day experiment consisted of 24 columns filled up to 70 cm with predominantly sandy material. Four types of columns were used (six replicates) depending on the presence of plants (Phalaris arundinacea L. var. picta L.) and the presence of pharmaceutical compounds in the influent. The influent was synthetic municipal waste water to which a mixture of 5 mg/L of diclofenac and 5 mg/L of sulfamethoxazole was added. The observed removal of diclofenac was moderate (approx. 50%) and the removal of sulfamethoxazole was relatively low (24–30%). It was found that the removal of diclofenac and sulfamethoxazole was not affected by the vegetation. The presence of diclofenac and sulfamethoxazole in the influent had significant effect on the effluent concentration of N-NO3 and the water loss in the columns, which in both cases were lower than in the control columns. The scope for further research was discussed.  相似文献   

8.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

9.
The antimicrobial performance of two fouling-release coating systems, Intersleek 700® (IS700; silicone technology), Intersleek 900® (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5′-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.  相似文献   

10.
The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4–3.3 μg ml?1). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ~90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.  相似文献   

11.
1. Biofilm development and activity on wood substrata (Nothofagus menziesii) were examined at four forested sites in a South Island, New Zealand, river catchment over a period of 6 months. Two of the sites had brown waters and mean pH of 3.7 and 4.5, whereas the other two had clear waters and mean pH of 6.3 and 6.8. 2. Fungi and other filamentous heterotrophs were the dominant colonizers of wood at all sites; few algal cells were present. Incorporation of 14C-glucose by biofilms was greatest in all four streams after 3 months, whereas endocellulase activity fluctuated over time and temporal patterns differed among streams. 3. No clear relationship was found between the incorporation of 14C-glucose or endocellulase activity of biofilms and pH, although at one near-neutral pH site 14C-glucose uptake increased in response to nutrient (N + P) additions. 4. After 6 months, incorporation of 14C-glucose and endocellulase activity of biofilms on Pinus radiata dowels buried vertically in the stream beds did not differ at depths of 3–9 cm and 19–25 cm in each stream. 5. Radiotracer experiments with a grazing amphipod (Paraleptamphopus sp.) demonstrated that biofilms on wood from all four sites could be ingested and at least partially assimilated. Chironomid larvae and harpacricoid copepods were the most abundant invertebrates colonizing wood substrata at all sites. Different chironomid species dominated at acidic and near-neutral pH sites. 6. Overall, our findings provide little support for the hypothesis that microbial activity on organic substrata is necessarily lower in streams of low pH.  相似文献   

12.
The effect of copper additions (Cu ranging from 0 to 30?µM) on the photosynthesis of three different microalgal biofilms was studied to identify the factors that cause sensitivity differences between benthic and pelagic algae. The response of biofilms which colonized artificial substrata in the River Meuse was compared with those of two laboratory-grown monospecific biofilms, one consisting of the diatom Synedra ulna, and the other composed of a filament-forming cyanobacterium, Oscillatoria sp. The photosynthetic yield ΦII (quantum efficiency of photosystem II) was studied with PAM (Pulse Amplitude Modulated) fluorimetry. S. ulna biofilms appeared to be the most sensitive to Cu, followed by the cyanobacteria, while natural biofilms, dominated by supposedly very sensitive diatom species such as Melosira varians and Diatoma vulgare, were the most resistant to Cu. In the highly productive biofilms, pH is suggested to play a role in lowering toxicity by helping the precipitation of cupric ions. Cu accumulation by the biofilms during the exposure period followed a linear relationship with Cu concentration, saturation not being observed; natural biofilms had an accumulation factor of 1–2.5?×?103 relative to the concentrations in the water, while the diatoms growing unattached to the substratum had a higher concentration factor, up to 4.9?×?103. It was concluded that the physical structure of the biofilm (package of cells and thickness), and not the species composition, was the main factor regulating the sensitivity of the biofilm to Cu toxicity during short-term exposures.  相似文献   

13.
Bacterial consortium volatile suspended soil (VSS) (Vatva soil sample) with a capability of azo dye Reactive Orange M2R (ROM2R) decolorization and degradation (shown in our earlier studies using Fourier transform infrared spectroscopy (FTIR) and phytotoxicity studies) was isolated from industrial wastewaters by enrichment culture technique. The present study was carried out to study bacterial population dynamics in consortium Vatva soil sample (VSS) during azo dye ROM2R degradation and to identify the consortium members that were actively involved in the degradation process. To achieve this goal, a real-time Polymerase chain reaction (PCR) assay targeting species-specific region of 16S rDNA of each consortial bacteria was developed to provide quantitative information about the bacterial abundance during azo dye degradation. The real-time PCR assay indicated that Pseudomonas aeruginosa (VSS-6) dominated consortium bacterial community during the active continuous bioremediation process. Attempt has been made to scale up from 100 ml volume to 10 L operation volume with intermittent additions (batch fed loadings) in a Sequence batch reactor (SBR). The development of VSS consortium biomass (MLVSS), changes in COD and biochemical oxygen demand, and the dye degradation were studied under conditions simulating the operations of biological effluent treatment in an attempt to develop a commercially applicable dye effluent treatment process unit.  相似文献   

14.
Pseudomonas sp CE-2 cells attach and form biofilms on 304-stainless steel (SS) coupons. A series of experiments were carried out in order to understand the role of exopolysaccharides (EPS) in the formation and maintenance of CE-2 biofilms on SS coupons. The biofilm density and EPS concentration increased over the period of incubation and the highest values for both were recorded after 72 h. Calcofluor and the lectin concanavalin A (Con A) showed a positive interaction with 72-h old biofilms, indicating the presence of β 1-4 linked polymers, and α-d-glucose and α-d-mannose in the biofilm matrix of CE-2. When the CE-2 cells were grown in the presence of calcofluor (200 μg ml?1), biofilm formation was significantly reduced (~85%). Conversely, the lectins Con A or WGA did not influence the CE-2 biofilms on the SS coupons. Furthermore, treatment with cellulase, an enzyme specific for the degradation of β 1-4 linked polymers, removed substantial amounts of CE-2 biofilm from SS coupons. These results strongly suggest the involvement of β 1-4 linked polymers in the formation and maintenance of Pseudomonas sp. CE-2 biofilms on SS coupons.  相似文献   

15.
In this study, the mechanical properties of biofilms formed at the surface of nano-filtration (NF) membranes from a drinking water plant were analysed. Confocal laser scanning microscopy observations revealed that the NF biofilms formed a dense and heterogeneous structure at the membrane surface, with a mean thickness of 32.5 ± 17.7 μm. The biofilms were scraped from the membrane surface and analysed in rotation and oscillation experiments with a RheoStress 150 rotating disk rheometer. During rotation analyses, a viscosity decrease with speed of shearing characteristic of rheofluidification was observed (η = 300 Pa s for ý = 0.3 s?1). In the oscillation analyses with a sweeping of frequency (1–100 Hz), elasticity (G′) ranged from 3000 to 3500 Pa and viscosity (G″) from 800 to 1200 Pa. Creep curves obtained with an application of a shear stress of 30 Pa were viscoelastic in nature. The G 0 and η values were, respectively, 1.4 ± 0.3 × 103 Pa and 3.3 ± 0.65 × 106 Pa s. The relationship between the characteristics of NF biofilms and the flow conditions encountered during NF is discussed.  相似文献   

16.
Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions.  相似文献   

17.
18.
The efficiency of stabilization pond treatment of domestic wastewater in removing culturable cells of motile Aeromonas and its influence on the incidence of resistance to seven antibiotics were investigated in this study. Removal efficiency was higher (P < 0.001) in the warm months (98.8%) than in the cold months (97%). Among the 264 isolates, 163 were Aeromonas caviae, 24 were A. hydrophila, and 54 were A. sobria. Twenty-three isolates could not be identified to the species level. In the influent, A. caviae dominated in both cold and warm months. In the water samples originating from the influent, A. sobria was present at higher percentages in the warm period. All the isolates were resistant to amoxicillin and most of them (73%) exhibited resistance to cephalothin. Of the three species tested, A. sobria was more susceptible to antibiotics than either A. caviae or A. hydrophila. The most striking difference among the species was seen in resistance to cephalothin. There were 91 % of A. caviae strains and 96% of A. hydrophila isolates that were resistant to cephalothin. However, only 9% of A. sobria strains exhibited resistance to this drug. The high incidence of resistance in raw sewage was connected with a high proportion of A. caviae, whereas in the water samples collected from the effluent during the warm months, a high proportion of A. sobria decreased the total amount of multiple-resistant bacteria. Results demonstrated the need for identification to the species level.Offprint requests to: L. Hassani.  相似文献   

19.
This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48–72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm?2) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.  相似文献   

20.
Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l?1, while the minimum biofilm elimination concentration (MBEC) was 780–3,120 mg l?1. Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号