首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.  相似文献   

2.
Epidermal growth factor receptor (EGFR) is often constitutively stimulated in many cancers owing to the binding of ligands such as epidermal growth factor (EGF). Therefore, it is necessary to investigate the interaction between EGFR and its targeting biomolecules. The main aim of this study was to estimate the binding affinity and adhesion force of two targeting molecules, anti-EGFR monoclonal antibody (mAb LA1) and the peptide GE11 (YHWYGYTPQNVI), with respect to EGFR and to compare these values with those obtained for the ligand, EGF. Surface plasmon resonance (SPR) was used to determine the equilibrium dissociation constant (KD) for evaluating the binding affinity. Atomic force microscopy (AFM) was performed to estimate the adhesion force. In the case of EGFR, the KD of EGF, GE11, and mAb LA1 were 1.77 × 10−7, 4.59 × 10−4 and 2.07 × 10−9, respectively, indicating that the binding affinity of mAb LA1 to EGFR was higher than that of EGF, while the binding affinity of GE11 to EGFR was the lowest among the three molecules. The adhesion force between EGFR and mAb LA1 was 210.99 pN, which is higher than that observed for EGF (209.41 pN), while the adhesion force between GE11 and EGFR was the lowest (59.51 pN). These results suggest that mAb LA1 binds to EGFR with higher binding affinity than EGF and GE11. Moreover, the adhesion force between mAb LA1 and EGFR was greater than that observed for EGF and GE11. The SPR and AFM experiments confirmed the interaction between the receptor and targeting molecules. The results of this study might aid the screening of ligands for receptor targeting and drug delivery.  相似文献   

3.
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.  相似文献   

4.
Binding of Epidermal growth factor (EGF) to epidermal growth factor receptor (EGFR) in two types of cancer cells (HeLa; 5 × 104 EGFR/cell) and MDA-MB-468; 2 × 106 EGFR/cell) was studied using Total Internal Reflectance Fluorescence (TIRF) microscopy at single molecule precision. Mathematical modeling of the binding kinetics revealed that cells respond differently to the same concentration of EGF depending on the expression level of EGFR. Compared to Hela, MDA-MB-468 cells show; (a) higher number of pre-formed dimers, (b) improved EGF-EGFR interaction at lower ligand concentrations, and (c) shorter time-lapse between first and second EGF binding to the dimer. Treatment with a pharmacological inhibitor of EGFR, AG1478, produced strikingly different binding kinetics where the extent of pre-formed EGFR dimers increased substantially. Thus, single molecule approaches produce novel, quantitative information on signaling mechanisms of significant biological importance. Surface kinetics could also serve as surrogate markers to predict biological outcome of signaling pathways.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N‐glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF–EGFR binding takes place through a large‐scale induced‐fitting mechanism. Proteins 2017; 85:561–570. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The receptor (EGFR) for epidermal growth factor (EGF) and transforming growth alpha (TGFα) is often overexpressed in certain types of human malignancy and high levels of expression of the receptor and/ or coexpression of growth factors. EGF and TGFα have also been correlated with poor prognosis in many patients. We have produced a number of rat monoclonal antibodies (MAbs) against four distinct epitopes on the external domain of the EGF receptor and are currently evaluating their potential for therapeutic use. Nine of these of MAbs were found to inhibit the binding of TGF and EGF to the receptor on tumor cells and these MAbs were able to inhibit the growth in vitro and in vivo of tumor cells that overexpress the EGF receptor. Here, we describe the results of experiments to determine the antitumor activity of combination treatment with two antibodies directed against separate epitopes on the external domain of human EGFR. Our results showed that treatment of human tumor xenografts with a combination of two anti-EGFR MAbs that bind to two distinct epitopes on the external domain of EGF receptor was not as effective as treatment with ICR62 alone, which binds to epitope C on the EGFR and is of IgG2b isotype. A phase I clinical trial with antibody ICR62 is currently underway in Royal Marseden Hospital (UK) in patients with head and neck and lung carcinomas.  相似文献   

7.
Aberrant activation of the epidermal growth factor receptor (EGFR), a prototypic receptor tyrosine kinase, is critical to the biology of many common cancers. The molecular events that define how EGFR transmits an extracellular ligand binding event through the membrane are not understood. Here we use a chemical tool, bipartite tetracysteine display, to report on ligand-specific conformational changes that link ligand binding and kinase activation for full-length EGFR on the mammalian cell surface. We discover that EGF binding is communicated to the cytosol through formation of an antiparallel coiled coil within the intracellular juxtamembrane (JM) domain. This conformational transition is functionally coupled to receptor activation by EGF. In contrast, TGFα binding is communicated to the cytosol through formation of a discrete, alternative helical interface. These findings suggest that the JM region can differentially decode extracellular signals and transmit them to the cell interior. Our results provide new insight into how EGFR communicates ligand-specific information across the membrane.  相似文献   

8.
A growing number of studies are evaluating retinal progenitor cell (RPC) transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR) and evaluated whether exposure to epidermal growth factor (EGF) can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.  相似文献   

9.
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. EGFR is activated upon binding to e.g. epidermal growth factor (EGF), leading to cell survival, proliferation and migration. EGFR overactivation is associated with tumor progression. We have previously shown that low dose UVB illumination of cancer cells overexpressing EGFR prior to adding EGF halted the EGFR signaling pathway. We here show that UVB illumination of the extracellular domain of EGFR (sEGFR) induces protein conformational changes, disulphide bridge breakage and formation of tryptophan and tyrosine photoproducts such as dityrosine, N-formylkynurenine and kynurenine. Fluorescence spectroscopy, circular dichroism and thermal studies confirm the occurrence of conformational changes. An immunoassay has confirmed that UVB light induces structural changes in the EGF binding site. A monoclonal antibody which competes with EGF for binding sEGFR was used. We report clear evidence that UVB light induces structural changes in EGFR that impairs the correct binding of an EGFR specific antibody that competes with EGF for binding EGFR, confirming that the 3D structure of the EGFR binding domain suffered conformational changes upon UV illumination. The irradiance used is in the same order of magnitude as the integrated intensity in the solar UVB range. The new photonic technology disables a key receptor and is most likely applicable to the treatment of various types of cancer, alone or in combination with other therapies.  相似文献   

10.
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family. Ligand (epidermal growth factor or EGF) binding to the EGFR results in the coordinated activation and integration of biochemical signaling events to mediate cell growth, migration, and differentiation. One mechanism the cell utilizes to orchestrate these events is ligand-mediated endocytosis through the canonical clathrin-mediated endocytic pathway. Identification of proteins that regulate the intracellular movement of the EGF.EGFR complex is an important first step in dissecting how specificity of EGFR signaling is conferred. We examined the role of the small molecular weight guanine nucleotide-binding protein (G-protein) rab7 as a regulator of the distal stages of the endocytic pathway. Through the transient expression of activating and inactivating mutants of rab7 in HeLa cells, we have determined that rab7 activity directly correlates with the rate of radiolabeled EGF and EGFR degradation. Furthermore, when inhibitory mutants of rab7 are expressed, the internalized EGF.EGFR complex accumulates in high-density endosomes that are characteristic of the late endocytic pathway. Thus, we conclude that rab7 regulates the endocytic trafficking of the EGF.EGFR complex by regulating its lysosomal degradation.  相似文献   

11.
The classic mode of G protein‐coupled receptor (GPCR)‐mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)‐mediated cleavage of plasma membrane‐anchored EGFR ligands. Herein, we show that the Gαs‐activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2) transactivate EGFR through increased cell‐surface delivery of the EGFR ligand transforming growth factor‐α (TGFα) in polarizing madin‐darby canine kidney (MDCK) and Caco‐2 cells. This is achieved by PKA‐mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα‐containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser‐223, a process that is facilitated by the molecular scaffold A‐kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell‐surface delivery of TGFα and increased EGFR activation. Thus, GPCR‐triggered, PKA/AKAP12/NKD2‐regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.   相似文献   

12.
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
14.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

15.
Transforming growth factor alpha (TGFα) is a potent ligand of the epidermal growth factor receptor (EGFR). EGFR is frequently over-expressed in epithelial tumors and endogenous ligands, mostly TGFα, are frequently co-expressed with EGFR, potentially resulting in autocrine stimulation of tumor cell growth. Therefore, different therapeutic approaches aim for the inactivation of TGFα/EGF/EGFR signaling system, but no approach is based on TGFα as a target. The principal goal of this work was to assess the potential of an active specific immunotherapy approach to block the TGFα/EGFR autocrine loop. For the proof of the concept, a fusion protein between human TGFα (hTGFα) and P64k protein from Neisseria meningitidis was generated, and its immunogenicity characterized in a mouse model using different adjuvants. All immunogens were effective for the generation of specific humoral responses against hTGFα. The inmunodominant epitope of hTGFα when immunizing mice with the fusion protein involved the C-loop/C-terminal region. This region includes key residues for hTGFα binding to EGFR. The anti-hTGFα immune mice sera recognized the natural hTGFα precursor in A431 cells and hTGFα-transfected 3T3 fibroblasts as revealed by flow cytometry analysis and immunoblotting. They inhibited the binding of 125I-TGFα to the EGFR, EGFR-autophosphorylation, and downstream activation of MAP kinases as well as proliferation of two EGFR-expressing human carcinoma cell lines. These data suggest that EGFR signaling activation by the hTGFα autocrine loop may be inhibited in vivo by induction of specifically blocking antibodies. The fusion protein reported in this paper could be a potential immunogen for the development of a new cancer vaccine. Part of this work was supported by a travel scholarship sponsored by the Boehringer Ingelheim Fonds  相似文献   

16.
The epidermal growth factor receptor (EGFR) regulates key processes of cell biology, including proliferation, survival, and differentiation during development, tissue homeostasis, and tumorigenesis. Canonical EGFR activation involves the binding of seven peptide growth factors. These ligands are synthesized as transmembrane proteins comprising an N‐terminal extension, the EGF module, a short juxtamembrane stalk, a hydrophobic transmembrane domain, and a carboxy‐terminal fragment. The central structural and functional feature is the EGF module, a sequence containing six cysteines in a conserved spacement which is responsible for binding to the EGFR. While the membrane‐anchored peptide can be biologically active by juxtacrine signaling, in most cases the EGF module is proteolytically cleaved (a process termed ectodomain shedding) to release the soluble growth factor, which may act in an endocrine, paracrine, or autocrine fashion. This review summarizes the structural and functional properties of these fascinating molecules and presents selected examples to illustrate their roles in development, physiology, and pathology. J. Cell. Physiol. 218: 460–466, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
18.
Right side-out plasma membrane vesicles isolated from HeLa cells exhibited an NADH oxidase activity at their external surfaces that was inhibited by the antitumor sulfonylurea, N-(4-methylphenylsulfonyl)-N′-(4-chlorophenyl)urea (LY181984). Intact HeLa cells (fresh or frozen) also exhibited an NADH oxidase activity at the external cell surface. The inhibition of this activity by LY181984 was enhanced by the addition of epidermal growth factor (EGF). The order of addition was critical. It was necessary that the LY181984 be followed by the EGF. If the EGF was administered first, the response to LY181984 was unaffected by EGF. Binding of [3H]LY181984 to HeLa cells also was enhanced by EGF. Growth experiments with HeLa cells revealed a similar pattern of response to EGF. The EC50 of growth inhibition of LY181984 was about 100 μM. However, if the LY181984 was followed by addition of 10 nM EGF, the EC50 for LY181984 was reduced to about 30 nM which now approximated the previously determined Kd of [3H]LY181984 binding of 30 nM and the EC50 of 30 nM for inhibition of NADH oxidase activity by LY181984 by isolated vesicles of plasma membranes. The tumor-inactive sulfonylurea N-(methylphenylsulfonyl-N′-(phenyl)urea (LY181985) was ineffective in the inhibition of NADH oxidation and of growth with HeLa cells either in the presence or absence of EGF.  相似文献   

19.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

20.
The epidermal growth factor receptor ( EGFR ) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis. This endocytosis lacks many of the characteristics of ligand‐induced EGFR endocytosis. We compared the two types of endocytosis with regard to the requirements for proteins in the internalization machinery. Both types of endocytosis require clathrin, but while epidermal growth factor (EGF) ‐induced EGFR internalization also required Grb 2 , p38 MAPK ‐induced internalization did not. Interestingly , AP ‐2 knock down blocked p38 MAPK ‐induced EGFR internalization, but only mildly affected EGF ‐induced internalization. In line with this, simultaneously mutating two AP ‐2 interaction sites in EGFR affected p38 MAPK ‐induced internalization much more than EGF ‐induced EGFR internalization. Thus, it seems that EGFR in the two situations uses different sets of internalization mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号