首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
病毒宏基因组学研究进展   总被引:1,自引:0,他引:1  
病毒宏基因组学是一种新的病毒组学研究手段,随着高通量测序技术的飞速发展,人们能够从环境中快速发现、鉴定病毒基因组的组成并研究其特征。在过去的十年里,研究者们运用病毒宏基因组学发现了许多新型病毒,增强了人们对不同环境中病毒组成、分布和多样性的了解。因此,病毒宏基因组学已成为清晰描绘各种特殊环境中病毒图谱、了解自然界中病毒分布动态的有效工具。本文主要从病毒宏基因组的概念、样品前处理和病毒总基因组提取方法、测序技术以及病毒宏基因组的应用和发展前景方面进行概述。  相似文献   

2.
宏基因组研究的生物信息学平台现状   总被引:2,自引:0,他引:2  
由Handelsman et al(1998)提出的宏基因组(metagenome)泛指特定环境样品(例如:人类和动物的肠道、母乳、土壤、湖泊、冰川和海洋等环境)中微生物群落所有物种的基因组。宏基因组技术起源于环境微生物学研究,而新一代高通量测序技术使其广泛应用成为可能。与基因组学研究相类似,目前宏基因组学发展的瓶颈在于如何高效分析高通量测序产生的海量数据,因此,相关的生物信息学分析方法和平台是宏基因组学研究的关键。该文介绍了目前宏基因组研究领域中主要的生物信息学软件及工具;鉴于目前宏基因组研究所采用的"全基因组测序"(whole genome sequencing)和"扩增子测序"(amplicon sequencing)两大测序方法所获得的数据和相应分析方法有较大差异,文中分别对相应软件平台进行了介绍。  相似文献   

3.
随着测序技术的迅速发展,人们对宏基因组的研究逐渐深入。通过宏基因组学对微生物群落的测序和分析,以理解微生物组成与环境之间的相互作用。微生物宏基因组的分析摆脱了传统研究中微生物分离培养的技术限制,并获得了微生物群落的相对丰度和群落的功能等信息。用于微生物数据分析的工具和软件较多,对于研究者选择合适的分析方法具有一定困难。概述了微生物宏基因组分析方法的流程,总结了分析中常用的工具及软件,为研究者快速筛选分析方法,揭示数据背后的生物学意义提供参考。  相似文献   

4.
人体肠道微生物包括细菌、真菌、古细菌和病毒等,肠道病毒组的基因组约占肠道微生物总DNA的5.8%,病毒的数量在所有肠道微生物中排名第二,且多样性高。受高比例细菌基因组的影响,很难直接从宏基因组数据中深入分析肠道病毒组。随着病毒样颗粒(VLPs)富集技术的出现以及高通量测序技术的迅速发展,近年来对肠道病毒组的研究越来越多。基于VLPs,发现真核病毒、植物相关病毒和噬菌体是肠道病毒组的主要组成部分,而且未知病毒序列占比高达81%~93%。现阶段病毒组富集扩增方法主要有超速离心、单引物扩增和多重置换扩增等。疾病特异性研究表明,炎症性肠病、酒精性肝病和2型糖尿病等与饮食及肠道病毒组改变相关。本综述回顾了近十年对人类肠道病毒组的研究,总结归纳了目前肠道病毒组的构成、研究方法及与人体健康的相关性,探讨了未来肠道病毒组的研究方向,力求为后续的研究提供新思路。  相似文献   

5.
高通量测序技术的发展提高了人们对微生物组的认识。宏基因组学技术因其全面和深入的分析功能被广泛应用于各种环境微生物组的研究中,尤其在阐明各种疾病与人体微生物组的关系中,宏基因组学技术具有重要作用。痤疮作为一种常见的皮肤疾病,严重影响人们皮肤美观度和心理健康。利用宏基因组学技术挖掘皮肤微生物与痤疮的关系,将有助于痤疮发病机理的研究和临床治疗方法的改进。通过介绍宏基因组学技术的发展背景、概述及其应用研究进展,探讨皮肤微生物与痤疮的关系,综述宏基因组学技术在痤疮研究中的应用现状,并总结目前宏基因组学技术在皮肤疾病研究中存在的问题,旨在为痤疮的宏基因组研究提供参考。  相似文献   

6.
宏基因组学诞生于上世纪90年代,是指不经过微生物培养阶段,采用直接提取环境中总DNA的方法,对微生物基因总和进行研究的一门新学科.宏基因组技术的出现,使得人们对占微生物总体99%以上不可培养微生物的研究成为现实,微生物基因的可探测空间显著增大.总的来说,目前宏基因组技术的应用主要分为两个方面:一方面是筛选功能基因,开发具有所需功能的蛋白;另一方面是通过对宏基因组文库进行分析,探讨在各种环境下微生物间相互作用和微生物与周围环境间相互影响的规律,以便我们能更加客观、全面地认识微生物世界.在宏基因组技术的应用范围被不断扩展的同时,围绕着宏基因组文库的构建和筛选、测序和分析等方面的研究已成为宏基因组学发展的主要推动力,宏基因组技术的进步将不断提升其应用价值.  相似文献   

7.
8.
宏基因组学研究试图通过测序并分析微生物群落的DNA序列,以理解环境微生物的组成及其与环境的交互作用。宏基因组学革命性地改变了微生物学,使得以免培养的方式研究复杂生物系统中的微生物群落成为可能。第二代测序技术的不断进步和生物信息学的高速发展促进了高通量宏基因组研究的发展,大批高质量的宏基因组数据不断产生并对科学界开放,宏基因组学的重要作用被科学界广泛认可。与此同时,对应个体不同健康状态和人体不同部位的大量宏基因组样本数据不断产生,使得比较和分类宏基因组样本在微生物学研究上变得更加重要,比较宏基因组学成为宏基因组学的重要分支。主要介绍了宏基因组数据的分析比较,以及样本分类的相关研究和算法。  相似文献   

9.
基于高通量测序的宏基因组学研究是近年来的研究热点之一。宏基因组的生物信息分析正在逐渐完善成熟.各种分析软件和流程的开发与应用,极大地促进了宏基因组研究的发展,特别是在遗传与进化、基因发现、宏基因组和人类疾病的相关研究等方面取得了显著成果。本文旨在结合宏基因组学的研究内容和研究方向,对宏基因组的生物信息分析方法进行综述,探讨宏基因组的生物信息分析面临的机遇和挑战。  相似文献   

10.
近年来,通过阿米巴共培养等方法发现了一批新的病毒,统称为巨大病毒(giant virus)。它们分布广泛,不仅有很大的病毒颗粒,基因组也非常庞大,还编码许多与蛋白质合成相关的基因,突破了人们对病毒的一般认识,引发了对病毒起源和本质的讨论。巨大病毒被认为有潜在致病性。本文综述了在人体中针对两类最早发现的巨大病毒--拟菌病毒(Mimivirus)和马赛病毒(Marseillevirus)开展的血清学、分子生物学、宏基因组检测、病毒分离及其对哺乳动物感染和致病性研究的进展  相似文献   

11.
Viruses in aquatic ecosystems are characterized by extraordinary abundance and diversity. Thus far, there have been limited studies focused on viral communities in river water systems. Here, we investigated the virome of the Yangtze River Delta using viral metagenomic analysis. The compositions of viral communities from six sampling sites were analyzed and compared. By using library construction and next generation sequencing, contigs and singlet reads similar to viral sequences were classified into 17 viral families, including nine dsDNA viral families, four ssDNA viral families and four RNA viral families. Statistical analysis using Friedman test suggested that there was no significant difference among the six sampling sites (P > 0.05). The viromes in this study were all dominated by the order Caudovirales, and a group of Freshwater phage uvFW species were particularly prevalent among all the samples. The virome from Nanjing presented a unique pattern of viral community composition with a relatively high abundance of family Parvoviridae. Phylogenetic analyses based on virus hallmark genes showed that the Caudovirales order and CRESS-DNA viruses presented high genetic diversity, while viruses in the Microviridae and Parvoviridae families and the Riboviria realm were relatively conservative. Our study provides the first insight into viral community composition in large river ecosystem, revealing the diversity and stability of river water virome, contributing to the proper utilization of freshwater resource.  相似文献   

12.
The human respiratory tract is heavily exposed to microorganisms. Viral respiratory tract pathogens, like RSV, influenza and rhinoviruses cause major morbidity and mortality from respiratory tract disease. Furthermore, as viruses have limited means of transmission, viruses that cause pathogenicity in other tissues may be transmitted through the respiratory tract. It is therefore important to chart the human virome in this compartment. We have studied nasopharyngeal aspirate samples submitted to the Karolinska University Laboratory, Stockholm, Sweden from March 2004 to May 2005 for diagnosis of respiratory tract infections. We have used a metagenomic sequencing strategy to characterize viruses, as this provides the most unbiased view of the samples. Virus enrichment followed by 454 sequencing resulted in totally 703,790 reads and 110,931 of these were found to be of viral origin by using an automated classification pipeline. The snapshot of the respiratory tract virome of these 210 patients revealed 39 species and many more strains of viruses. Most of the viral sequences were classified into one of three major families; Paramyxoviridae, Picornaviridae or Orthomyxoviridae. The study also identified one novel type of Rhinovirus C, and identified a number of previously undescribed viral genetic fragments of unknown origin.  相似文献   

13.
Bats are reservoir animals harboring many important pathogenic viruses and with the capability of transmitting these to humans and other animals. To establish an effective surveillance to monitor transboundary spread of bat viruses between Myanmar and China, complete organs from the thorax and abdomen from 853 bats of six species from two Myanmar counties close to Yunnan province, China, were collected and tested for their virome through metagenomics by Solexa sequencing and bioinformatic analysis. In total, 3,742,314 reads of 114 bases were generated, and over 86% were assembled into 1,649,512 contigs with an average length of 114 bp, of which 26,698 (2%) contigs were recognizable viral sequences belonging to 24 viral families. Of the viral contigs 45% (12,086/26,698) were related to vertebrate viruses, 28% (7,443/26,698) to insect viruses, 27% (7,074/26,698) to phages and 95 contigs to plant viruses. The metagenomic results were confirmed by PCR of selected viruses in all bat samples followed by phylogenetic analysis, which has led to the discovery of some novel bat viruses of the genera Mamastrovirus, Bocavirus, Circovirus, Iflavirus and Orthohepadnavirus and to their prevalence rates in two bat species. In conclusion, the present study aims to present the bat virome in Myanmar, and the results obtained further expand the spectrum of viruses harbored by bats.  相似文献   

14.
Ge X  Li Y  Yang X  Zhang H  Zhou P  Zhang Y  Shi Z 《Journal of virology》2012,86(8):4620-4630
Increasing data indicate that bats harbor diverse viruses, some of which cause severe human diseases. In this study, sequence-independent amplification and high-throughput sequencing (Solexa) were applied to the metagenomic analysis of viruses in bat fecal samples collected from 6 locations in China. A total of 8,746,417 reads with a length of 306,124,595 bp were obtained. Among these reads, 13,541 (0.15%) had similarity to phage sequences and 9,170 (0.1%) had similarity to eukaryotic virus sequences. A total of 129 assembled contigs (>100 nucleotides) were constructed and compared with GenBank: 32 contigs were related to phages, and 97 were related to eukaryotic viruses. The most frequent reads and contigs related to eukaryotic viruses were homologous to densoviruses, dicistroviruses, coronaviruses, parvoviruses, and tobamoviruses, a range that includes viruses from invertebrates, vertebrates, and plants. Most of the contigs had low identities to known viral genomic or protein sequences, suggesting that a large number of novel and genetically diverse insect viruses as well as putative mammalian viruses are transmitted by bats in China. This study provides the first preliminary understanding of the virome of some bat populations in China, which may guide the discovery and isolation of novel viruses in the future.  相似文献   

15.
Viruses are known to be the most numerous biological entities in soil; however, little is known about their diversity in this environment. In order to explore the genetic diversity of soil viruses, we isolated viruses by centrifugation and sequential filtration before performing a metagenomic investigation. We adopted multiple-displacement amplification (MDA), an isothermal whole-genome amplification method with phi29 polymerase and random hexamers, to amplify viral DNA and construct clone libraries for metagenome sequencing. By the MDA method, the diversity of both single-stranded DNA (ssDNA) viruses and double-stranded DNA viruses could be investigated at the same time. On the contrary, by eliminating the denaturing step in the MDA reaction, only ssDNA viral diversity could be explored selectively. Irrespective of the denaturing step, more than 60% of the soil metagenome sequences did not show significant hits (E-value criterion, 0.001) with previously reported viral sequences. Those hits that were considered to be significant were also distantly related to known ssDNA viruses (average amino acid similarity, approximately 34%). Phylogenetic analysis showed that replication-related proteins (which were the most frequently detected proteins) related to those of ssDNA viruses obtained from the metagenomic sequences were diverse and novel. Putative circular genome components of ssDNA viruses that are unrelated to known viruses were assembled from the metagenomic sequences. In conclusion, ssDNA viral diversity in soil is more complex than previously thought. Soil is therefore a rich pool of previously unknown ssDNA viruses.  相似文献   

16.
Viruses are the most numerous biological entity, existing in all environments and infecting all cellular organisms. Compared with cellular life, the evolution and origin of viruses are poorly understood; viruses are enormously diverse, and most lack sequence similarity to cellular genes. To uncover viral sequences without relying on either reference viral sequences from databases or marker genes that characterize specific viral taxa, we developed an analysis pipeline for virus inference based on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR is a prokaryotic nucleic acid restriction system that stores the memory of previous exposure. Our protocol can infer CRISPR-targeted sequences, including viruses, plasmids, and previously uncharacterized elements, and predict their hosts using unassembled short-read metagenomic sequencing data. By analyzing human gut metagenomic data, we extracted 11,391 terminally redundant CRISPR-targeted sequences, which are likely complete circular genomes. The sequences included 2,154 tailed-phage genomes, together with 257 complete crAssphage genomes, 11 genomes larger than 200 kilobases, 766 genomes of Microviridae species, 56 genomes of Inoviridae species, and 95 previously uncharacterized circular small genomes that have no reliably predicted protein-coding gene. We predicted the host(s) of approximately 70% of the discovered genomes at the taxonomic level of phylum by linking protospacers to taxonomically assigned CRISPR direct repeats. These results demonstrate that our protocol is efficient for de novo inference of CRISPR-targeted sequences and their host prediction.  相似文献   

17.
18.
中国部分地区蝙蝠携带病毒的宏基因组学分析   总被引:2,自引:0,他引:2  
蝙蝠携带有60多种病毒,其中许多对人有高度致病性.为了解中国蝙蝠携带病毒的自然本底、蝙蝠病毒的多样性和挖掘潜在的病毒病原,通过基于Solexa高通量测序的病毒宏基因组学技术对从吉林、云南、湖南采集的蝙蝠组织进行病毒组学研究,获得了11 644 232条读长(Reads),并拼接出44 872条重叠序列(Contig).通过核酸序列注释发现,其中8.2%(4 002/44 872)的重叠序列与病毒相关,能进一步注释到36个病毒科,包括19种脊椎动物病毒、6种植物病毒、4种昆虫病毒和4种噬菌体.通过对重叠序列的遗传进化分析、多序列比对显示,被注释为细小病毒、腺联病毒、博卡病毒、腺病毒、小双节RNA病毒等的重叠序列与已知病毒相似,部分序列却又呈现出明显的序列差异.通过对腺病毒和博卡病毒进一步的PCR扩增证实了此研究方法可靠.旨在了解我国蝙蝠携带病毒组的构成,对建立高效的野生动物源人兽共患病的监测方法提供参考.  相似文献   

19.
Metagenomic analyses of marine viruses generate an overview of viral genes present in a sample, but the percentage of the resulting sequence fragments that can be reassembled is low and the phenotype of the virus from which a given sequence derives is usually unknown. In this study, we employed physical fractionation to characterize the morphological and genomic traits of a subset of uncultivated viruses from a natural marine assemblage. Viruses from Kāne‘ohe Bay, Hawai‘i were fractionated by equilibrium buoyant density centrifugation in a cesium chloride (CsCl) gradient, and one fraction from the CsCl gradient was then further fractionated by strong anion-exchange chromatography. One of the fractions resulting from this two-dimensional separation appeared to be dominated by only a few virus types based on genome sizes and morphology. Sequences generated from a shotgun clone library of the viruses in this fraction were assembled into significantly more numerous contigs than have been generated with previous metagenomic investigations of whole DNA viral assemblages with comparable sequencing effort. Analysis of the longer contigs (up to 6.5 kb) assembled from our metagenome allowed us to assess gene arrangement in this subset of marine viruses. Our results demonstrate the potential for physical fractionation to facilitate sequence assembly from viral metagenomes and permit linking of morphological and genomic data for uncultivated viruses.  相似文献   

20.
Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists. This article was reviewed by Igor B. Zhulin and Laksminarayan M. Iyer. For the full reviews, see the Reviewers?? reports section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号