首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Free radical research》2013,47(2):161-169
Mitochondrial dysfunction contributes to cell damage in a number of human diseases. One significant mechanism by which mitochondria damage cells is by producing reactive oxygen species from the respiratory chain. In this study we measured the production of reactive oxygen species by leukocyte mitochondria in blood from rheumatoid arthritis patients. To do this we used the chemiluminescence of lucigenin, which is accumulated by mitochondria within cells and reacts with superoxide to form a chemiluminescent product. By using specific inhibitors we could distinguish between the production of reactive oxygen species by mitochondria and by NADPH oxidase. There was a five-fold increase in mitochondrial reactive oxygen species production in whole blood and monocytes from patients with rheumatoid arthritis, when compared to healthy subjects or patients with non-rheumatic diseases. There was no increase in mitochondrial reactive oxygen species production by neutrophils from rheumatoid arthritis patients. The enhanced mitochondrial radical production in rheumatoid arthritis patients correlated significantly with increased levels of tumor necrosis factor alpha in plasma (p<0.0001). As tumor necrosis factor alpha is known to increase mitochondrial reactive oxygen species production the elevated mitochondrial radical formation seen in rheumatoid arthritis patients may be due to activation of the mitochondrial radical production. These data suggest that elevated mitochondrial oxidative stress contributes to the pathology of rheumatoid arthritis.  相似文献   

2.
Mitochondrial dysfunction generates reactive oxygen species (ROS) which damage essential macromolecules. Oxidative modification of proteins, DNA, and lipids has been implicated as a major causal factor in the age-associated decline in tissue function. Mitochondrial electron transport chain complexes I and III are the principal sites of ROS production, and oxidative modifications to the complex subunits inhibit their in vitro activity. Therefore, we hypothesize that mitochondrial complex subunits may be primary targets for oxidative damage by ROS which may impair normal complex activity by altering their structure/function leading to mitochondrial dysfunction associated with aging. This study of kidney mitochondria from young, middle-aged, and old mice reveals that there are functional decreases in complexes I, II, IV, and V between aged compared to young kidney mitochondria and these functional declines directly correlate with increased oxidative modification to particular complex subunits. We postulate that the electron leakage from complexes causes specific damage to their subunits and increased ROS generation as oxidative damage accumulates, leading to further mitochondrial dysfunction, a cyclical process that underlies the progressive decline in physiologic function seen in aged mouse kidney. In conclusion, increasing mitochondrial dysfunction may play a key role in the age-associated decline in tissue function.  相似文献   

3.
Reactive oxygen and DNA damage in mitochondria.   总被引:8,自引:0,他引:8  
C Richter 《Mutation research》1992,275(3-6):249-255
During the last decade the importance of reactive oxygen species as major contributors to various types of cancer, heart diseases, cataracts, Parkinson's and other degenerative diseases that come with age, and to natural aging has become apparent. Mitochondria are the most important intracellular source of reactive oxygen. Mitochondrial DNA is heavily damaged by reactive oxygen at the bases, as indicated by the high steady-state level of 8-hydroxydeoxyguanosine, the presence of which causes mispairing and point mutations. Mitochondrial DNA is also oxidatively fragmented to a certain extent. Conceivably, such fragmentation relates to deletions found in mitochondrial DNA. Point mutations and deletions have recently been shown to be etiologically linked to several human diseases and natural aging. Future studies should address the causal relationship between mitochondrial dysfunction, production of reactive oxygen species, and aging.  相似文献   

4.
PURPOSE OF REVIEW: Reactive oxygen species have been implicated in the initiation and progression of atherosclerosis. Reactive oxygen species can oxidize lipoproteins, limit the vascular availability of antiatherosclerotic nitric oxide and promote vascular expression of cytokines and adhesion molecules. Nox proteins of the NADPH oxidase family are prominent sources of vascular reactive oxygen species, and Nox protein-dependent reactive oxygen species production has been linked to atherogenesis. Recently, significant progress has been made in the understanding of differences among the Nox proteins. RECENT FINDINGS: Nox proteins exhibit cell-specific expression patterns and divergent molecular mechanisms controlling activity have been identified for individual Nox proteins. These aspects may relate to cellular activation, differentiation, proliferation, angiogenesis and gene expression, and may also be modulated by the functional states of the vessel such as endothelial dysfunction: in quiescent vessels, Nox proteins contribute to signal transduction and to the physiological responses to growth factors such as vascular endothelial growth factor or thrombin. Excessive Nox-dependent reactive oxygen species formation in vascular disease such as hyperlipidemia or diabetes, however, largely contributes to vascular dysfunction resulting in defective angiogenesis and inflammatory activation. SUMMARY: Reactive oxygen species, specifically generated by individual Nox proteins, act as secondary messengers. Selective inhibition of Nox proteins might be a novel approach to prevent and treat cardiovascular diseases.  相似文献   

5.
Mitochondrial dysfunction has been implicated as a cause of age-related disorders, and the mitochondrial theory of aging links aging, exercise, and diet. Endothelial dysfunction is a key paradigm for vascular disease and aging, and there is considerable evidence that exercise and dietary restriction protect against cardiovascular disease. Recent studies demonstrate that estrogen receptors are present in mitochondria and that estrogen promotes mitochondrial efficiency and decreases oxidative stress in the cerebral vasculature. Chronic estrogen treatment increases mitochondrial capacity for oxidative phosphorylation while decreasing production of reactive oxygen species. The effectiveness of estrogen against age-related cardiovascular disorders, including stroke, may thus arise in part from hormonal effects on mitochondrial function. Estrogen-mediated mitochondrial efficiency may also be a contributing factor to the longer lifespan of women.  相似文献   

6.
7.
Oxidative stress has been implicated as an important etiologic factor in atherosclerosis and vascular dysfunction. Antioxidants may inhibit atherogenesis and improve vascular function by two different mechanisms. First, lipid-soluble antioxidants present in low-density lipoprotein (LDL), including alpha-tocopherol, and water-soluble antioxidants present in the extracellular fluid of the arterial wall, including ascorbic acid (vitamin C), inhibit LDL oxidation through an LDL-specific antioxidant action. Second, antioxidants present in the cells of the vascular wall decrease cellular production and release of reactive oxygen species (ROS), inhibit endothelial activation (i.e., expression of adhesion molecules and monocyte chemoattractants), and improve the biologic activity of endothelium-derived nitric oxide (EDNO) through a cell- or tissue-specific antioxidant action. alpha-Tocopherol and a number of thiol antioxidants have been shown to decrease adhesion molecule expression and monocyte-endothelial interactions. Vitamin C has been demonstrated to potentiate EDNO activity and normalize vascular function in patients with coronary artery disease and associated risk factors, including hypercholesterolemia, hyperhomocysteinemia, hypertension, diabetes, and smoking.  相似文献   

8.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

9.
A key adaptation enabling the fetus to survive in a limited energy environment may be the reprogramming of mitochondrial function, which can have deleterious effects. Critical questions are whether mitochondrial dysfunction progressively declines after birth, and if so, what mechanism might underlie this process. To address this, we developed a model of intrauterine growth retardation (IUGR) in the rat that leads to diabetes in adulthood. Reactive oxygen species (ROS) production and oxidative stress gradually increased in IUGR islets. ATP production was impaired and continued to deteriorate with age. The activities of complex I and III of the electron transport chain progressively declined in IUGR islets. Mitochondrial DNA point mutations accumulated with age and were associated with decreased mitochondrial DNA content and reduced expression of mitochondria-encoded genes in IUGR islets. Mitochondrial dysfunction resulted in impaired insulin secretion. These results demonstrate that IUGR induces mitochondrial dysfunction in the fetal beta-cell, leading to increased production of ROS, which in turn damage mitochondrial DNA. A self-reinforcing cycle of progressive deterioration in mitochondrial function leads to a corresponding decline in beta-cell function. Finally, a threshold in mitochondrial dysfunction and ROS production is reached, and diabetes ensues.  相似文献   

10.
线粒体为细胞内的能量工厂,对细胞的增殖、分化、存活以及稳态的维持起着重要的调节作用。线粒体功能障碍与机体生长、发育异常、认知发生障碍以及多种器官病变密切相关。线粒体形态、结构和功能的检测对于了解线粒体的稳态以及功能状态有着重要意义,线粒体的功能状态与线粒体膜电位、线粒体膜通道、线粒体Ca2+浓度、ATP生成、呼吸链复合体活性、活性氧生成以及DNA突变密切相关。本文就线粒体形态、结构和功能的检测方法及其研究进展进行了综述。  相似文献   

11.
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.  相似文献   

12.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   

13.
Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson's disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-α–lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of α-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100–1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-γ coactivator 1α as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.  相似文献   

14.
Luo  Jian-Sheng  Ning  Jia-Qi  Chen  Zhuo-Ya  Li  Wen-Jing  Zhou  Rui-Ling  Yan  Ru-Yu  Chen  Meng-Jie  Ding  Ling-Ling 《Neurochemical research》2022,47(8):2158-2172

Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer’s disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.

  相似文献   

15.
The role of nitric oxide in the maintenance of vasoactive balance   总被引:1,自引:0,他引:1  
Endothelial dysfunction may be considered as the interstage between risk factors and cardiovascular pathology. An imbalance between the production of vasorelaxing and vasoconstricting factors plays a decisive role in the development of hypertension, atherosclerosis and target organ damage. Except vasorelaxing and antiproliferative properties per se, nitric oxide participates in antagonizing vasoconstrictive and growth promoting effects of angiotensin II, endothelins and reactive oxygen species. Angiotensin II is a potent activator of NAD(P)H oxidase contributing to the production of reactive oxygen species. Numerous signaling pathways activated in response to angiotensin II and endothelin-1 are mediated through the increased level of oxidative stress, which seems to be in casual relation to a number of cardiovascular disturbances including hypertension. With respect to the oxidative stress, the NO molecule seems to be of ambivalent nature. On the one hand, NO is able to reduce generation of reactive oxygen species by inhibiting association of NAD(P)H oxidase subunits. On the other hand, when excessively produced, NO reacts with superoxides resulting in the formation of peroxynitrite, which is a free radical deteriorating endothelial function. The balance between vasorelaxing and vasoconstricting substances appears to be the principal issue for the physiological functioning of the vascular bed.  相似文献   

16.
Stroke is an emerging major health problem often resulting in death or disability. Hyperlipidemia, high blood pressure and diabetes are well established risk factors. Endothelial dysfunction associated with these risk factors underlies pathological processes leading to atherogenesis and cerebral ischemic injury. While mechanisms of disease are complex, endothelial dysfunction involves decreased nitric oxide (NO) and elevated levels of reactive oxygen species (ROS). At physiological levels, ROS participate in regulation of cellular metabolism. However, when ROS increase to toxic levels through imbalance of production and neutralization by antioxidant enzymes, they cause cellular injury in the form of lipid peroxidation, protein oxidation and DNA damage. Central nervous system cells are more vulnerable to ROS toxicity due to their inherent higher oxidative metabolism and less antioxidant enzymes, as well as higher content of membranous fatty acids. During ischemic stroke, ROS concentration rises from normal low levels to a peak point during reperfusion possibly underlying apoptosis or cellular necrosis. Clinical trials and animal studies have shown that natural compounds can reduce oxidative stress due to excessive ROS through their antioxidant properties. With further study, we may be able to incorporate these compounds into clinical use with potential efficacy for both the treatment and prevention of stroke.  相似文献   

17.
Mitochondria are a major source of intracellular reactive oxygen species, the production of which increases with cancer. The deleterious effects of reactive oxygen species may be responsible for the impairment of mitochondrial function observed during various pathophysiological states associated with oxidative stress and cancer. These organelles are also targets of oxidative damage (oxidation of mitochondrial DNA, lipids, protein). An important factor for protein maintenance in the presence of oxidative stress is enzymatic reversal of oxidative modifications and/or protein degradation. Failure of these processes is likely a critical component of the cancer process. Mitochondrial proteases degrade misfolded and non-assemble polypeptides, thus performing quality control surveillance in the organelle. Mitochondrial proteases may be directly involved in cancer development as recently shown for HtrA2/Omi or may regulate crucial mitochondrial molecule such as cytochrome c oxidase 4 a subunit of the cytochrome c oxidase complex degraded by the Lon protease. Thus, the role of mitochondrial proteases is further addressed in the context of oxidative stress and cancer.  相似文献   

18.
Mitochondrial bioenergetics in aging   总被引:5,自引:0,他引:5  
Mitochondria are strongly involved in the production of reactive oxygen species, considered as the pathogenic agent of many diseases and of aging. The mitochondrial theory of aging considers somatic mutations of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, complex I appears to be mostly affected and to become strongly rate limiting for electron transfer. Mitochondrial bioenergetics is also deranged in human platelets upon aging, as shown by the decreased Pasteur effect (enhancement of lactate production by respiratory chain inhibition). Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants, coenzyme Q is the only one of endogenous biosynthesis. Exogenous coenzyme Q, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases.  相似文献   

19.
Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article.  相似文献   

20.
孤独症谱系障碍(ASDs)患儿中约有5%伴有线粒体功能紊乱.线粒体功能紊乱会损害对能量高度依赖的生理进程,如神经发育和神经可塑性,从而导致孤独症.本文综述了孤独症个体中线粒体过量的活性氧(reactive oxygen species,ROS)产生及其抗氧化系统减弱、呼吸链复合物异常、线粒体基因突变及与线粒体功能相关的基因组DNA编码的蛋白质异常等方面的研究,旨在阐述线粒体系统多方面的紊乱在孤独症个体中均有所体现,希望能够对孤独症的发病机制和治疗提供帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号