首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aphidius ervi (Hymenoptera, Braconidae) is an endophagous parasitoid of various aphid species, including Acyrthosiphon pisum (Homoptera, Aphididae), the model host used in the present study. Parasitized hosts show a marked increase of their nutritional suitability for the developing parasitoid larvae. This alteration of the biochemical and metabolic profile is due to a castration process mediated by the combined action of the venom, injected at the oviposition, and of the teratocytes, cells deriving from the dissociation of the embryonic membrane. Teratocytes produce and release in the host haemocoel two parasitism-specific proteins, which are of crucial importance for the development of their sister larvae. One of the proteins is a fatty acid binding protein (Ae-FABP), which shows a high affinity for C14-C18 saturated fatty acids (FAs) and for oleic and arachidonic acids. To better define the possible nutritional role of this protein, we have studied its immunolocalization profile in vivo and the impact on FA uptake by the epidermal and midgut epithelia of A. ervi larvae. During the exponential growth of A. ervi larvae, Ae-FABP is distributed around discrete lipid particles, which are abundantly present in the haemocoel of parasitized host aphids and in the midgut lumen of parasitoid larvae. Moreover, a strong immunodetection signal is evident on the surface of the two larval epithelia involved in nutrient absorption: the parasitoid midgut epithelium and the external epidermal layer. These two epithelia can effectively absorb radiolabelled myristic acid, but the FA transport rates are not affected by the presence in the medium of Ae-FABP. The protein appears to act essentially as a vector in the host haemolymph, transferring FAs from the digestion sites of host lipids to the growing parasitoid larvae. These data indicate that the proteins produced by A. ervi teratocytes may play complementary roles in the nutritional exploitation of the host.  相似文献   

2.
Host insects are either susceptible or resistant to parasitoids, where resistant hosts express immunity factors and compatible parasitoids express virulence factors that may reveal the manipulation of susceptible hosts. Using proteomics we compared responses of the same host, the aphid Macrosiphum euphorbiae, challenged by a well-adapted parasitoid Aphidius nigripes or by a less adapted relative, Aphidius ervi. The host was found to be equally acceptable to both parasitoids, but while A. nigripes normally developed and killed hosts (high susceptibility), development of the incompatible A. ervi was arrested at the primary egg stage (high resistance). Two-dimensional gels at two stages of parasitism revealed divergence in patterns of protein regulation of the M. euphorbiae host, responding to A. ervi or A. nigripes, with the greatest number of protein modulations in the host resistance response. In A. ervi-resistant hosts, proPO was strongly up-regulated, as were also three cuticle proteins, suggesting a PO basis and exoskeleton reinforcement as early and late responses of M. euphorbiae to the risk of parasitism. Resistance also correlated with up-regulation of antioxidative, energy-related, cytoskeleton and heat shock proteins. In A. nigripes-susceptible hosts, various proteins implicated in host and bacterial symbiont metabolism were significantly altered, suggesting complex host nutritional modulation. Over-expression of energy-related proteins also increased when A. nigripes established and developed. Aphid proteomes of compatible and incompatible Aphidius parasitism provide an integrative basis for consolidating our knowledge of host-parasitoid interactions.  相似文献   

3.
Microplitis rufiventris Kok. (Hym., Braconidae) is an internal solitary parasitoid of many noctuid caterpillars including the cotton leafworm Spodoptera littoralis (Boisd.) ( Kokujev 1914 ; Hammad et al. 1965 ; Gerling 1969 ), the lesser cotton worm S. exigua Hbn. ( Meier 1929 ; Thompson 1946 ; El-Minshawy 1963 ); S. latebrosa Lederer ( Hammad et al. 1965 ) and American bollworm Heliothis armigera Hbn. ( Meier 1929 ; Ibrahim & Tawfik 1975 ). When the egg of M. rufiventris hatches in its host, S. littoralis, spherical cells from the serosa that envelope the parasitoid embryo are released into the host’s haemolymph. Approximately 400 cells are liberated from an egg of the parasitoid. These cells increase in size, reaching a maximum average diameter of 137 μm at the completion of parasitoid development ( Khafagi 1997 ). These cells are most frequently called ‘teratocytes’ ( — 1968 , 1971; Vinson 1970 ). It is reported that the presence of large numbers of the teratocytes is indicative of superparasitism but their number does not give an indication to the exact number of parasitoid eggs from which the cells have been derived ( —, — Khafagi et al. 1998 ) . Therefore, it was of interest to initiate prediction studies on egg and teratocyte numbers in superparasitized host larvae.  相似文献   

4.
Protease inhibitors (PIs) have been shown to cause lethal and sublethal effects on aphids depending on the kind of PI and aphid species. Therefore, these proteins might affect aphid parasitoids directly by inhibiting their digestive proteolysis or indirectly via their development in a less suitable host. In our study, the risk of exposure and the potential effects of soybean Bowman-Birk inhibitor (SbBBI) and oryzacystatin I (OCI) on the aphid endoparasitoid Aphidius ervi were investigated using artificial diet to deliver PIs. Immunoassays showed that both SbBBI and OCI were detected in the honeydew of aphids reared on artificial diet containing these recombinant proteins at 100 microg/mL. However, only SbBBI was detected in parasitoid larvae, while this PI could not be detected in adult parasitoids emerged from PI-intoxicated aphids. Enzymatic inhibition assays showed that digestive proteolytic activity of larvae and adults of A. ervi predominantly relies on serine proteases and especially on chymotrypsin-like activity. Bioassays using SbBBI and OCI on artificial diet were performed. A. ervi that developed on intoxicated aphids had impaired fitness. Thus development and parasitism success of parasitoids exposed to OCI were severely affected. On the contrary, SbBBI only altered significantly female size and sex ratio. Direct exposure to PIs through adult food intake did not affect female's longevity, while SbBBI and OCI (100 microg/mL) induced 69% and 30% inhibition of digestive protease activity, respectively. These studies made it possible to estimate the risk of exposure to plant PIs and the sensitivity of the aphid parasitoid A. ervi to these entomotoxins, by combining immunological, biochemical and biological approaches. First it pointed out that only immature stages are affected by PIs. Secondly, it documented two different modes of effect, according to the nature of the PIs and both host and parasitoid susceptibility. OCI prevented the development of A. ervi mainly due to the host susceptibility, whereas SbBBI only induced sublethal effects on the parasitoid, possibly due to both direct action on the parasitoid susceptible proteases, and host-mediated action through size reduction.  相似文献   

5.
Aphid clonal resistance to a parasitoid fails under heat stress   总被引:1,自引:0,他引:1  
Parasitoid virulence and host resistance are complex interactions depending on metabolic rate and cellular activity, which in aphids additionally implicate heritable secondary symbionts among the Enterobacteriaceae. As performance of the parasitoid, the aphid host and its symbionts may differentially respond to temperature, the success or failure of aphid parasitism is difficult to predict when temperature varies. We tested the hypothesis that resistance of the pea aphid Acyrthosiphon pisum to the parasitoid Aphidius ervi, which is linked to aphid secondary symbionts, may depend on temperature in several resistant and non-resistant aphid clonal lineages of different geographic origin and of known bacterial symbiosis, using experiments in controlled environments. Complete immunity to A. ervi at 20 degrees C in three different aphid clones whose symbiosis is characterized by the possession of Hamiltonella defensa reversed to high susceptibility at 25 degrees C and especially 30 degrees C, suggesting that the aphid's immune responses to the establishment and early development of the parasitoid is strongly reduced at moderately high temperatures. There was no evidence that a pea aphid control genotype that was susceptible to A. ervi at 20 degrees C could become more resistant as temperature increases, as has been suggested for insect fungal pathogens. By contrast, our results suggest that aphid clonal resistance to A. ervi and related parasitoids is characteristic of cool temperature conditions, similar to various other fitness attributes of aphids. Based on evidence that H. defensa symbionts characterized all three A. ervi resistant pea aphid clones studied, but was absent in control aphids that remained susceptible at all temperatures, we suggest that secondary symbiosis plays a key role in the heat sensitivity of aphid clonal resistance. Our study may also indicate that aphid natural control of variably susceptible host populations by aphid parasitoids is more likely at moderate to high temperatures.  相似文献   

6.
The braconid Aphidius ervi Haliday (Hymenoptera, Braconidae) is an endophagous parasitoid of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera, Aphididae). Parasitized host aphids show different degrees of castration, a response that is total when parasitoid oviposition takes place in first instar hosts. Deleterious effects on the host reproductive system are already evident by 24h following parasitization, before egg hatching. The effect of parasitoid venom on A. pisum ovaries has been studied by performing microinjections in non-parasitized host aphids and observing the cellular alterations of the apical germaria of ovarioles. Venom injection reproduced the same alterations observed in parasitized aphids, while injections of saline solution did not induce any detectable change. By 24h, the germarial cells of both venom-treated aphids and parasitized aphids showed the absence of the nucleolus and of electron-dense material around the nucleus, frequently referred to as "nuage material". By 48h more evident signs of degeneration were observed, suggesting the possible occurrence of apoptosis. The bioactive component of the venom was both heat- and protease-sensitive. The activity was found in purified fractions that were highly enriched in two proteins with an approximate molecular mass of 21kD and 36kD, respectively. These macromolecules are the most abundant components of A. ervi venom and, unlike many venom proteins of studied parasitic Hymenoptera, are not glycosylated and appear to be subunits of an oligomeric protein. The adaptive significance of host castration is discussed.  相似文献   

7.
Chelonus inanitus (Braconidae) is a solitary egg-larval parasitoid which lays its eggs into eggs of Spodoptera littoralis (Noctuidae); the parasitoid larva then develops in the haemocoel of the host larva. Host embryonic development lasts approx. 3.5 days while parasitoid embryonic development lasts approx. 16 h. All stages of host eggs can be successfully parasitized, and we show here that either the parasitoid larva or the wasp assures that the larva eventually is located in the host's haemocoel. (1) When freshly laid eggs, up to almost 1-day-old, are parasitized, the parasitoid hatches while still in the yolk and enters the host either after waiting or immediately through the dorsal opening. (2) When 1-2-day-old eggs are parasitized, the host embryo has accomplished final dorsal closure and is covered by an embryonic cuticle when the parasitoid hatches; in this case the parasitoid larva bores with its moving abdominal tip into the host. (3) When 2.5-3.5-day-old eggs are parasitized, the wasp oviposits directly into the haemocoel of the host embryo; from day 2 to 2.5 the embryo is still very small and the wasps, after probing, often restrain from oviposition for a few hours.  相似文献   

8.
The suitability of Macrosiphum euphorbiae (Thomas), Aulacorthum solani (Kaltenbach) and Acyrthosiphon kondoi Shinji (Hemiptera: Aphididae) as hosts for the aphid parasitoid Aphidius ervi Haliday was evaluated by assessing host size, host preference, and host quality. Tests were carried out in an environmental chamber at 22±1oC, 70±10% RH and 12h photophase. Replicates (11) consisted of one 24h-old mated female of A. ervi without a previous oviposition experience. Female was released into a Petri dish (5 cm) with 20 2nd and 3rd instars of one of each aphid species tested on a leaf disc of the host plant onto a 1% water-agar layer. Parasitoid emergency was lower in A. kondoi (78.7%) compared to M. euphorbiae (92.2%) and A. solani (91.7%). Acyrthosiphon kondoi (0.36 mm) was the smallest host. The parasitoid showed preference (74.0% parasitism) for M. euphorbiae, the largest host (hind tibia length=0.73 mm), which in turn yielded larger A. ervi females (0.75 mm).  相似文献   

9.
Host age and fitness-related traits in a koinobiont aphid parasitoid   总被引:4,自引:0,他引:4  
Abstract.  1. Trade-offs play a key role in species evolution and should be found in host–parasitoid interactions where the host quality may differ between host age categories.
2. The braconid wasp, Aphidius ervi , is a solitary endoparasitoid that allows its aphid hosts to continue to feed and grow after parasitisation. The hypotheses that host age influences their quality and that female parasitoids exploit their hosts based on that quality were tested under laboratory conditions using no-choice tests.
3.  Aphidius ervi females accepted the aphid Myzus persicae for oviposition and their progeny developed successfully in all host ages. The fitness-related traits of parasitoids did not increase linearly with the host age in which they developed. Host quality was found to be optimal at intermediate host ages and the females preferred to parasitise these hosts. The shortest progeny development time and a more female-biased sex ratio were observed in hosts of intermediate age.
4. This study suggests the existence of multiple interactive trade-offs occurring during host–parasitoid interactions according to host age related quality.  相似文献   

10.
Abstract 1. Variation in plant chemistry does not only mediate interactions between plants and herbivores but also those between herbivores and their natural enemies, and plants and natural enemies. 2. Endophytic fungi complete their whole life cycle within the host plant’s tissue and are associated with a large diversity of plant species. Endophytes of the genus Neotyphodium alter the chemistry of the host plant by producing herbivore toxic alkaloids. 3. Here we asked whether the endophyte‐tolerant aphid species Metopolophium festucae could be defended against its parasitoid Aphidius ervi when feeding on endophyte‐infected plants. In a laboratory experiment, we compared life‐history traits of A. ervi when exposed to hosts on endophyte‐infected or endophyte‐free Lolium perenne. 4. The presence of endophytes significantly increased larval and pupal development times, but did not affect the mortality of immature parasitoids or the longevity of the adults. Although the number of parasitoid mummies tended to be reduced on endophyte‐infected plants, the number of emerging parasitoids did not differ significantly between the two treatments. 5. This shows that the metabolism of individual aphids feeding on infected plants may be changed and help in the defence against parasitoids. An increase in parasitoid development time should ultimately reduce the population growth of A. ervi. Therefore, endophyte presence may represent an advantage for endophyte‐tolerant aphid species through extended parasitoid development and its effect on parasitoid population dynamics.  相似文献   

11.
Plant virus and parasitoid interactions in a shared insect vector/host   总被引:2,自引:0,他引:2  
Interactions between barley yellow dwarf luteovirus (BYDV) and the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae), were investigated while sharing the vector/host, Sitobion avenae (F.) (Homoptera: Aphididae). Aphids, which were parasitized during their second larval stadium, had access to virus-infected plants before, immediately after, or several days after parasitoid attack. The larval development of A. ervi in S. avenae was significantly delayed when virus acquisition took place before or shortly after the parasitoid had hatched, but not when the parasitoid was at the second larval stage during virus acquisition. Similarly, the presence of BYDV led to a significantly higher aphid mortality when they acquired virus up to and including the time that A. ervi was at the first larval stage. Adult female parasitoids deposited fewer eggs in viruliferous aphids. Virus transmission was not reduced by parasitization, and in some experiments aphids which were subjected to parasitoid attack transmitted BYDV more efficiently than unattacked insects.  相似文献   

12.
Embryonic invasion into the tissue of genetically different organisms has been known only in mother-embryo interactions of viviparous organisms. Hence, embryonic invasions have been thought to occur only within the same or closely related species. For endoparasitic Hymenoptera, which are oviposited in their host egg but complete their development in the later stages, entry into the host embryo is essential. To date, the entry of these parasitoids is known to be accomplished by either egg deposition directly into the embryo or by the newly hatched larva boring into the embryo. However, Copidosoma floridanum is a polyembryonic parasitoid whose development is characterized by a prolonged embryonic stage, and which lacks a larval form during its host embryogenesis. We have analyzed the behavior and fate of C. floridanum embryos co-cultured with their host embryo in vitro. Here, we show that the morula-stage embryo of C. floridanum actively invades the host embryo. Histological analyses have demonstrated that C. floridanum embryonic invasion is associated with adherent junction to host cells rather than causing an obvious wound on the host cells. These findings provide a novel case of embryonic invasion into a phylogenetically distant host embryo, ensuring cellular compatibility with host tissues.  相似文献   

13.
ABSTRACT. A Y-tube olfactometer was used to test the reactions of the hymenopteran cereal aphid parasitoids Aphidius uzbekistanicus Luzhetski and A. ervi Haliday to odours from aphids and their host plants. Only females responded to aphids but both sexes responded to plant odours. A. uzbekistanicus responded to the cereal aphids Sitobion avenae (F.) and Metopolophium dirhodum (Walker) whilst A. ervi , which has a broad host range, responded to M. dirhodum and the pea aphid, Acyrthosiphon pisum. Female A. uzbekistanicus responded to wheat leaves only but males responded to a range of plant material. Both male and female A. ervi responded to wheat and bean leaves. The failure of A. ervi to respond to either nettle aphids, Microlophium carnosum (Bukt.), or nettle leaves, despite its frequent parasitization of this aphid in the field, suggests the existence of more than one race of the parasitoid and casts doubts on the usefulness of alternative hosts as reservoirs for A. ervi in integrated control programmes. Males of both species responded to their respective females suggesting the presence of a sex specific attractant.  相似文献   

14.
Abstract.  1. The parasitoid Aphidius ervi and the entomopathogenic fungus Pandora neoaphidis both require successful invasion of an aphid host to complete their life cycle. A shorter developmental period allows P. neoaphidis to out-compete A. ervi. Aphidius ervi may reduce this fitness cost by avoiding aphid colonies containing P. neoaphidis . Here the response of A. ervi towards P. neoaphidis was assessed using sequential experiments designed to replicate different stages of parasitoid foraging behaviour.
2. Entry rate experiments showed that A. ervi entered aphid colonies containing P. neoaphidis -sporulating cadavers and that there was no significant difference in the attraction of A. ervi to aphid-damaged Vicia faba plants containing either healthy Acyrthosiphon pisum or P. neoaphidis -sporulating cadavers.
3. Observational behavioural experiments indicated that the presence of P. neoaphidis did not affect the search time or total foraging time of A. ervi on V. faba plants infested with either healthy A. pisum or P. neoaphidis -sporulating cadavers.
4. In Petri dish bioassays using aphids infected with P. neoaphidis over a period of 120 h, A. ervi showed no difference in attack rate against uninfected aphids or living aphids infected with P. neoaphidis for 1, 24, 48, 72, or 96 h. However, sporulating cadavers (120 h infection) were not attacked.
5.  Aphidius ervi appears only able to detect the presence of P. neoaphidis once the host is dead and sporulation has started. The fitness of A. ervi may therefore be severely reduced when foraging in P. neoaphidis -infected aphid colonies.  相似文献   

15.
Wing formation in presumptive alate morphs (virginoparae and males) was observed for the pea aphid, Acyrthosiphon pisum, exposed to attack by the parasitoid, Aphidius ervi, at different stages of host development. Morphological abnormalities in parasitized aphids such as complete apterization (development of a wingless form), formation of rudimentary wing buds, and deformed wings indicate a possible disruption of the endocrine system. Changes in the body shape and the number of olfactory secondary rhinaria on the antennae could indicate an influence of juvenile hormone in parasitized A. pisum but the development of fifth-stadium supernumerary larvae (indicated by an extra moult and which can be induced by exogenous juvenile hormone treatments) was not found in parasitized aphids. In addition, while apterization of virginoparae can also be induced by the pro-allatocidal compound Precocene III, this was not possible in the male. Males which survived parasitoid attack without forming aphid mummies (indicating that oviposition had not occurred) developed as wingless individuals suggesting that the reproductive-tract-fluids from the female parasitoid were important in the wing inhibition process. Teratocytes from the parasitoid appeared to promote developmental arrest in parasitized aphids.  相似文献   

16.
17.
The egg-larval parasitoid Chelonus inanitus injects bracoviruses (BVs) and venom along with the egg into the host egg; both components are essential for successful parasitoid development. All stages of eggs of its natural host, Spodoptera littoralis, can be successfully parasitized, i.e. from mainly a yolk sphere to a fully developed embryo. Here, we show that the venom contains at least 25 proteins with masses from 14 kDa to over 300 kDa ranging from acidic to basic. The majority is glycosylated and their persistence in the host is short when old eggs are parasitized and much longer when young eggs are parasitized. Physiological experiments indicated three different functions. (1) Venom synergized the effect of BVs in disrupting host development when injected into third instar larvae. (2) Venom had a transient paralytic effect when injected into sixth instar larvae. (3) In vitro experiments with haemocytes of fourth instar larvae suggested that venom alters cell membrane permeability. We propose that venom promotes entry of BVs into host cells and facilitates placement of the egg in the embryo's haemocoel when old eggs are parasitized. The multifunctionality of the venom might thus be essential in enabling parasitization of all stages of host eggs.  相似文献   

18.
Aphidius ervi Haliday (Hymenoptera, Braconidae) is an endophagous parasitoid of several aphid species of economic importance, widely used in biological control. The definition of a suitable artificial diet for in vitro mass production of this parasitoid is still an unresolved issue that, to be properly addressed, requires a deeper understanding both of its nutritional needs and of the functional properties of the larval epithelia involved in nutrient absorption. The experimental evidence presented in this paper unequivocally demonstrates that the uptake of sugars and amino acids takes place through the body surface of the larval stages of A. ervi. These nutrients are efficiently absorbed by the larval epidermis, but the transport rate progressively declines over time. The epidermis exhibits a cross-reactivity to antibodies raised against the mammalian facilitative glucose transporter GLUT2 and the sodium cotransporter SGLT1. The analysis of sugar transport sensitivity to specific inhibitors indicates the involvement of GLUT2-like transporters, while a role for SGLT1-like transporters is not supported. The peculiar pathways of nutrient absorption in A. ervi larvae further corroborate the general idea that the pre-imaginal stages of endophagous koinobiont Hymenoptera, like Metazoan parasites, show a high degree of physiological integration with their hosts.  相似文献   

19.
Interspecific competition between parasitoid larvae may influence the size, structure, and stability of the population, leading to a reduction in total parasitism and thus restricting the pest control. Aphidius ervi (Haliday) and Praon volucre (Haliday) are endoparasitoids that possess a wide host range and present considerable potential for the biological control of the aphid Macrosiphum euphorbiae (Thomas). The larval competition between A. ervi and P. volucre, and the possible intrinsic competitive superiority of one of the parasitoids in M. euphorbiae, have been studied. In single parasitism experiments, mated parasitoid females (n=10) were maintained individually in contact with M. euphorbiae hosts (n=30) inside petri dishes containing lettuce leaf discs and maintained in environmental chamber at 22 ± 1°C, 70 ± 10% RH, and 12-h photophase. The multiple parasitism experiments consisted of exposing single parasitized aphids (n=120) to the second parasitoid species. Two oviposition events were performed with a 4-h interval between them, namely the following: sequence A (oviposition by A. ervi, followed by P. volucre) and sequence B (oviposition by P. volucre, followed by A. ervi). Oviposition sequence A generated 24 A. ervi and 55 P. volucre adults, whereas oviposition sequence B generated 23 and 49 adults. P. volucre is an intrinsically superior competitor compared with A. ervi, and the use of the two species simultaneously may result in competitive exclusion and influence the stability of the parasitoid population.  相似文献   

20.
Hodge S  Powell G 《Oecologia》2008,157(3):387-397
Plant viruses modify the development of their aphid vectors by inducing physiological changes in the shared host plant. The performance of hymenopterous parasitoids exploiting these aphids can also be modified by the presence of the plant pathogen. We used laboratory and glasshouse microcosms containing beans (Vicia faba) as the host plant to examine the interactions between a plant virus (pea enation mosaic virus; PEMV) and a hymenopterous parasitoid (Aphidius ervi) that share the aphid vector/host Acyrthosiphon pisum. Neither PEMV-infection of V. faba, nor the carriage of PEMV virions by A. pisum, affected the growth or morphology of the aphid, or the oviposition behaviour and development of A. ervi. The presence of developing Aphidius ervi larvae within Acyrthosiphon pisum did not affect the ability of the aphids to transmit PEMV. However, by reducing their longevity, parasitism ultimately decreased the time viruliferous aphids were able to inoculate plants. In terms of virus dispersal, parasitized aphids exhibited more movement around experimental arenas than unparasitized controls, causing a slight increase in the proportion of beans infected with PEMV. Exposure to adult Aphidius ervi caused Acyrthosiphon pisum to rapidly drop off bean plants and disperse to new hosts, resulting in considerably higher plant infection rates (70%) than that seen in control arenas (25%). The results of this investigation demonstrate that when parasitoids are added to a plant-pathogen-vector system, benefits to the host plant due to reduced herbivore infestation must be balanced against the consequences of parasitoid-induced aphid dispersal and a subsequent increase in the level of plant infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号