首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm–gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell–GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFβ cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.  相似文献   

2.
3.
A gene regulatory network (GRN) controls the process by which the endomesoderm of the sea urchin embryo is specified. In this GRN, the program of gene expression unique to the skeletogenic micromere lineage is set in train by activation of the pmar1 gene. Through a double repression system, this gene is responsible for localization of expression of downstream regulatory and signaling genes to cells of this lineage. One of these genes, delta, encodes a Notch ligand, and its expression in the right place and time is crucial to the specification of the endomesoderm. Here we report a cis-regulatory element R11 that is responsible for localizing the expression of delta by means of its response to the pmar1 repression system. R11 was identified as an evolutionarily conserved genomic sequence located about 13 kb downstream of the last exon of the delta gene. We demonstrate here that this cis-regulatory element is able to drive the expression of a reporter gene in the same cells and at the same time that the endogenous delta gene is expressed, and that temporally, spatially, and quantitatively it responds to the pmar1 repression system just as predicted for the delta gene in the endomesoderm GRN. This work illustrates the application of cis-regulatory analysis to the validation of predictions of the GRN model. In addition, we introduce new methodological tools for quantitative measurement of the output of expression constructs that promise to be of general value for cis-regulatory analysis in sea urchin embryos.  相似文献   

4.
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.  相似文献   

5.
6.
At fourth cleavage of sea urchin embryos four micromeres at the vegetal pole separate from four macromeres just above them in an unequal cleavage. The micromeres have the capacity to induce a second axis if transplanted to the animal pole and the absence of micromeres at the vegetal pole results in the failure of macromere progeny to specify secondary mesenchyme cells (SMCs). This suggests that micromeres have the capacity to induce SMCs. We demonstrate that micromeres require nuclear beta-catenin to exhibit SMC induction activity. Transplantation studies show that much of the vegetal hemisphere is competent to receive the induction signal. The micromeres induce SMCs, most likely through direct contact with macromere progeny, or at most a cell diameter away. The induction is quantitative in that more SMCs are induced by four micromeres than by one. Temporal studies show that the induction signal is passed from the micromeres to macromere progeny between the eighth and tenth cleavage. If micromeres are removed from hosts at the fourth cleavage, SMC induction in hosts is rescued if they later receive transplanted micromeres between the eighth and tenth cleavage. After the tenth cleavage addition of induction-competent micromeres to micromereless embryos fails to specify SMCs. For macromere progeny to be competent to receive the micromere induction signal, beta-catenin must enter macromere nuclei. The macromere progeny receive the micromere induction signal through the Notch receptor. Signaling-competent micromeres fail to induce SMCs if macromeres express dominant-negative Notch. Expression of an activated Notch construct in macromeres rescues SMC specification in the absence of induction-competent micromeres. These data are consistent with a model whereby beta-catenin enters the nuclei of micromeres and, as a consequence, the micromeres produce an inductive ligand. Between the eighth and tenth cleavage micromeres induce SMCs through Notch. In order to be receptive to the micromere inductive signal the macromeres first must transport beta-catenin to their nuclei, and as one consequence the Notch pathway becomes competent to receive the micromere induction signal, and to transduce that signal. As Notch is maternally expressed in macromeres, additional components must be downstream of nuclear beta-catenin in macromeres for these cells to receive and transduce the micromere induction signal.  相似文献   

7.
We investigated the inductive signals originating from the vegetal blastomeres of embryos of the sand dollar Peronella japonica, which is the only direct developing echinoid species that forms micromeres. To investigate the inductive signals, three different kinds of experimental embryos were produced: micromere-less embryos, in which all micromeres were removed at the 16-cell stage; chimeric embryos produced by an animal cap (eight mesomeres) recombined with a micromere quartet isolated from a 16-cell stage embryo; and chimeric embryos produced by an animal cap recombined with a macromere-derived layer, the veg1 or veg2 layer, isolated from a 64-cell stage embryo. Novel findings obtained from this study of the development of these embryos are as follows. Micromeres lack signals for endomesoderm specification, but are the origin of a signal establishing the oral–aboral (O–Ab) axis. Some non-micromere blastomeres, as well as micromeres, have the potential to form larval skeletons. Macromere descendants have endomesoderm-inducing potential. Based on these results, we propose the following scenario for the first step in the evolution of direct development in echinoids: micromeres lost the ability to send a signal endomesoderm induction so that the archenteron was formed autonomously by macromere descendants. The micromeres retained the ability to form larval spicules and to establish the O–Ab axis.  相似文献   

8.
In the sea urchin embryo, the large micromeres and their progeny function as a critical signaling center and execute a complex morphogenetic program. We have identified a new and essential component of the gene network that controls large micromere specification, the homeodomain protein Alx1. Alx1 is expressed exclusively by cells of the large micromere lineage beginning in the first interphase after the large micromeres are born. Morpholino studies demonstrate that Alx1 is essential at an early stage of specification and controls downstream genes required for epithelial-mesenchymal transition and biomineralization. Expression of Alx1 is cell autonomous and regulated maternally through beta-catenin and its downstream effector, Pmar1. Alx1 expression can be activated in other cell lineages at much later stages of development, however, through a regulative pathway of skeletogenesis that is responsive to cell signaling. The Alx1 protein is highly conserved among euechinoid sea urchins and is closely related to the Cart1/Alx3/Alx4 family of vertebrate homeodomain proteins. In vertebrates, these proteins regulate the formation of skeletal elements of the limbs, face and neck. Our findings suggest that the ancestral deuterostome had a population of biomineral-forming mesenchyme cells that expressed an Alx1-like protein.  相似文献   

9.
10.
11.
12.
The animal-vegetal axis of sea urchin embryos is morphologically apparent at the 16-cell stage, when the mesomeres, macromeres, and micromeres align along it. At this stage, the micromere is the only autonomously specified blastomere that functions as a signaling center. We used a subtraction PCR survey to identify the homeobox gene micro1 as a micromere-specific gene. The micro1 gene is a representative of a novel family of paired-like class homeobox genes, along with PlHbox12 from Paracentrotus lividus and pmar1 from Strongylocentrotus purpuratus. In the present study, we showed that micro1 is a multicopy gene with six or more polymorphic loci, at least three of which are clustered in a 30-kb region of the genome. The micro1 gene is transiently expressed during early cleavage stages in the micromere. Recently, nuclear -catenin was shown to be essential for the specification of vegetal cell fates, including micromeres, and the temporal and spatial coincidence of micro1 expression with the nuclear entry of -catenin is highly suggestive. We demonstrated that micro1 is a direct target of -catenin. In addition, we showed that micro1 is necessary and sufficient for micromere specification. These observations on the structure, regulation, and function of micro1 lead to the conclusion that micro1 and pmar1 (and potentially PlHbox12) are orthologous.  相似文献   

13.
Vasa is a DEAD-box RNA helicase that functions in translational regulation of specific mRNAs. In many animals it is essential for germ line development and may have a more general stem cell role. Here we identify vasa in two sea urchin species and analyze the regulation of its expression. We find that vasa protein accumulates in only a subset of cells containing vasa mRNA. In contrast to vasa mRNA, which is present uniformly throughout all cells of the early embryo, vasa protein accumulates selectively in the 16-cell stage micromeres, and then is restricted to the small micromeres through gastrulation to larval development. Manipulating early embryonic fate specification by blastomere separations, exposure to lithium, and dominant-negative cadherin each suggest that, although vasa protein accumulation in the small micromeres is fixed, accumulation in other cells of the embryo is inducible. Indeed, we find that embryos in which micromeres are removed respond by significant up-regulation of vasa protein translation, followed by spatial restriction of the protein late in gastrulation. Overall, these results support the contention that sea urchins do not have obligate primordial germ cells determined in early development, that vasa may function in an early stem cell population of the embryo, and that vasa expression in this embryo is restricted early by translational regulation to the small micromere lineage.  相似文献   

14.
15.
16.
17.
18.
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.  相似文献   

19.
Detergent treatment of sea urchin eggs at the mid 4-cell stage results in prevention of micromere segregation at the fourth cleavage. In these embryos not only the formation of the primary mesenchyme is suppressed, but synchrony of cell division, which is the rule during the first four cleavage cycles, continues for several cycles after the 16-cell stage while the typical mitotic phase wave that sets in after micromere segregation is abolished.
These results support the hypothesis that micromeres act as coordinators of the mitotic activity of the embryo.  相似文献   

20.
The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear β-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micromere and macromere progenies. To examine the functions of HpKrl in each blastomere, we constructed chimeric embryos composed of blastomeres from control and morpholino-mediated HpKrl-knockdown embryos and analyzed the phenotypes of the chimeras. Micromere-swapping experiments showed that HpKrl is not involved in micromere specification, while micromere-deprivation assays indicated that macromeres require HpKrl for cell-autonomous specification. Transplantation of normal micromeres into a micromere-less host with morpholino revealed that macromeres are able to receive at least some micromere signals regardless of HpKrl function. From these observations, we propose that two distinct pathways of endomesoderm formation exist in macromeres, a Krl-dependent pathway and a Krl-independent pathway. The Krl-independent pathway may correspond to the Delta/Notch signaling pathway via GataE and Gcm. We suggest that Krl may be a downstream component of nuclear β-catenin required by macromeres for formation of more vegetal tissues, not as a member of the Delta/Notch pathway, but as a parallel effector of the signaling (Krl-dependent pathway).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号