首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rigid-rod beta-barrels are composed of interdigitating, short, amphiphilic peptide strands that are flanked by stabilizing rigid-rod "staves." As a first step toward the construction of catalytic rigid-rod beta-barrels, we here report synthesis and study of a new barrel designed to comprise alternating leucine and histidine residues at the inner and lysine and glutamate residues at the outer barrel surface. Synthesis of p-octiphenyls with lateral tripeptide strands followed procedures described previously. Barrel formation by programmed assembly of complementary tripeptide-p-octiphenyl rods was monitored by circular dichroism (CD). CD-mixing curves (Job-plots) were consistent with 1:1-stoichiometry. Guanidinium chloride denaturation experiments gave a DeltaG(H20) = -1.8 kcal mol(-1) with a C(50) = 1.9 M. Size exclusion chromatography suggested quantitative formation of a hexamer. Facile barrel deconstruction by acid and divalent cations demonstrated the presence of internal, nonproximal histidines. Inclusion complex formation with fluorescent guests corroborated internal hydrophobicity of beta-barrel hosts and potential for intratoroidal catalysis.  相似文献   

2.
We report that decreasing beta-sheet length in homologous multifunctional rigid-rod beta-barrels with internal histidines increases ion channel stability by three orders of magnitude, reduces binding activity by four orders of magnitude, and reduces esterase activity up to 22-times. These results are further used to evaluate methods employed to characterize suprastructure and activity of synthetic multifunctional pores formed by p-octiphenyl beta-barrels with emphasis on applicability of the Hille model to determine internal diameters and the Woodhull equation to locate internal active sites.  相似文献   

3.
The characteristics of pores formed by p-octiphenyl beta-barrels with LWV triads at the outer surface are reported in comparison with the conventional rigid-rod beta-barrels with all-L outer surface. Maintained multifunctionality of tetrameric pores with external LWV triads (inversion of ion selectivity, molecular recognition and transformation) is implicative for intact barrel interior. Increased pore activity supports dominance of high bilayer affinity for W over low affinity for V. Transmembrane p-octiphenyl orientation (from fluorescence depth quenching) supports barrel-stave (rather than toroidal) pores and dominance of transmembrane preference of rigid rods over interfacial preference of W. Destabilization of beta-barrel pores in membranes (from short single-channel lifetimes) and in the media (from 4th-power dependence on monomer concentration) by LWV triads supports dominance of low beta-propensity for W over high beta-propensity for V. The relation between the stability of supramolecular (pre)pores and dependence of activity on monomer concentration is discussed in a more general context.  相似文献   

4.
Transmembrane beta-barrels, first observed in bacterial porins, are possible models for a number of membrane channels. Restrained molecular dynamics simulations based on idealized C alpha beta templates have been used to generate models of such beta-barrels. Model beta-barrels have been analyzed in terms of their conformational, energetic, and pore properties. Model beta-barrels formed by N = 4, 8, 12 and 16 anti-parallel Ala10 strands have been developed. For each N, beta-barrels with shear numbers S = N to 2N have been modeled. In all beta-barrel models the constituent beta-strands adopt a pronounced right-handed twist. Interstrand interactions are of approximately equal stability for all models with N > or = 8, whereas such interactions are weaker for the N = 4 beta-barrels. In N = 4 beta-barrels the pore is too narrow (minimum radius approximately 0.6 A) to allow ion permeation. For N > or = 8, the pore radius depends on both N and S; for a given value of N an increase in S from N to 2N is predicted to result in an approximately threefold increase in pore conductance. Calculated maximal conductances for the beta-barrel models are compared with experimental values for porins and for K+ channels.  相似文献   

5.
An equation for calculating the distances between the atoms involved in forming an idealized hydrogen bond in a parallel or antiparallel beta-barrel has been derived by adjusting the corresponding data given by Pauling and Corey for a beta-sheet. Based on these distances, a geometrical optimization method was developed, by which one can generate various idealized beta-barrels: parallel or antiparallel, tilted or non-tilted, right-tilted or left-tilted. For each type of idealized beta-barrel thus obtained, the corresponding conformation and characteristic geometric parameters as well as their relationship are analyzed and discussed. Since the strand in a tilted beta-barrel traces a curve rather than a straight line on a cylinder-like surface, a regular chain in which the dihedral angles of each residue are the same cannot form a tilted beta-barrel but only a non-tilted beta-barrel. As observed, the strands of a right-tilted beta-barrel possess a very strong right-handed twist. The radii of the idealized tilted parallel and antiparallel beta-barrels are greater than those of the corresponding non-tilted ones by approximately 1 A and approximately 1.5 A, respectively. Consequently, there is relatively more room for a tilted beta-barrel to accommodate the internal side-chains, suggesting that a conformational change from a non-tilted beta-barrel to a tilted one would ease the repulsion among the crowded internal side-chains so as to make the structure more stable. The values of root-mean-square fits indicate that the idealized right-tilted beta-barrels coincide quite well with the observed beta-barrels in both parallel and antiparallel cases.  相似文献   

6.
B Hazes  W G Hol 《Proteins》1992,12(3):278-298
The Greek key beta-barrel topology is a folding motif observed in many proteins of widespread evolutionary origin. The arthropodan hemocyanins also have such a Greek key beta-barrel, which forms the core of the third domain of this protein. The hemocyanin beta-barrel was found to be structurally very similar to the beta-barrels of the immunoglobulin domains, Cu,Zn-superoxide dismutase and the chromophore carrying antitumor proteins. The structural similarity within this group of protein families is not accompanied by an evolutionary or functional relationship. It is therefore possible to study structure-sequence relations without bias from nonstructural constraints. The present study reports a conserved pattern of features in these Greek key beta-barrels that is strongly suggestive of a folding nucleation site. This proposed nucleation site, which we call a "beta-zipper," shows a pattern of well-conserved, large hydrophobic residues on two sequential beta-strands joined by a short loop. Each beta-zipper strand is near the center of one of the beta-sheets, so that the two strands face each other from opposite sides of the barrel and interact through their hydrophobic side chains, rather than forming a hydrogen-bonded beta-hairpin. Other protein families with Greek key beta-barrels that do not as strongly resemble the immunoglobulin fold--such as the azurins, plastocyanins, crystallins, and prealbumins--also contain the beta-zipper pattern, which might therefore be a universal feature of Greek key beta-barrel proteins.  相似文献   

7.
The repeating unit of outer membrane beta-barrels from Gram-negative bacteria is the beta-hairpin, and representatives of this protein family always have an even strand number between eight and 22. Two dominant structural forms have eight and 16 strands, respectively, suggesting gene duplication as a possible mechanism for their evolution. We duplicated the sequence of OmpX, an eight-stranded beta-barrel protein of known structure, and obtained a beta-barrel, designated Omp2X, which can fold in vitro and in vivo. Using single-channel conductance measurements and PEG exclusion assays, we found that Omp2X has a pore size similar to that of OmpC, a natural 16-stranded barrel. Fusions of the homologous proteins OmpX, OmpA and OmpW were able to fold in vitro in all combinations tested, revealing that the general propensity to form a beta-barrel is sufficient to evolve larger barrels by simple genetic events.  相似文献   

8.
The infrared dichroic ratios of the amide bands from oriented beta-barrels yield an experimental value for the mean orientation, beta, of the beta-strands, relative to the barrel axis. For a barrel of n strands, this then gives the shear number, S, that characterizes the stagger of the beta-sheet. Combining values of beta and n specifies the barrel geometry by using the optimized model of Murzin, Lesk & Chothia for regular barrels. Application to published infrared data on the Escherichia coli outer membrane protein, OmpA yields S=9-10 (n=8), a barrel radius of 0.81(+/-0.01) nm, and an internal free volume of 0.031 nm(3) per residue, where the average twist of the beta-sheets is theta approximately 28 degrees, and their coiling angle is epsilon approximately 1 degrees. Hydrophobic matching of the 2.6 nm transmembrane stretch partly determines the shear number of the OmpA beta-barrel.  相似文献   

9.
The structure of bacterial outer membrane proteins   总被引:17,自引:0,他引:17  
Integral membrane proteins come in two types, alpha-helical and beta-barrel proteins. In both types, all hydrogen bonding donors and acceptors of the polypeptide backbone are completely compensated and buried while nonpolar side chains point to the membrane. The alpha-helical type is more abundant and occurs in cytoplasmic (or inner) membranes, whereas the beta-barrels are known from outer membranes of bacteria. The beta-barrel construction is described by the number of strands and the shear number, which is a measure for the inclination angle of the beta-strands against the barrel axis. The common right-handed beta-twist requires shear numbers slightly larger than the number of strands. Membrane protein beta-barrels contain between 8 and 22 beta-strands and have a simple topology that is probably enforced by the folding process. The smallest barrels form inverse micelles and work as enzymes or they bind to other macromolecules. The medium-range barrels form more or less specific pores for nutrient uptake, whereas the largest barrels occur in active Fe(2+) transporters. The beta-barrels are suitable objects for channel engineering, because the structures are simple and because many of these proteins can be produced into inclusion bodies and recovered therefrom in the exact native conformation.  相似文献   

10.
The amino acid composition and architecture of all beta-barrel membrane proteins of known three-dimensional structure have been examined to generate information that will be useful in identifying beta-barrels in genome databases. The database consists of 15 nonredundant structures, including several novel, recent structures. Known structures include monomeric, dimeric, and trimeric beta-barrels with between 8 and 22 membrane-spanning beta-strands each. For this analysis the membrane-interacting surfaces of the beta-barrels were identified with an experimentally derived, whole-residue hydrophobicity scale, and then the barrels were aligned normal to the bilayer and the position of the bilayer midplane was determined for each protein from the hydrophobicity profile. The abundance of each amino acid, relative to the genomic abundance, was calculated for the barrel exterior and interior. The architecture and diversity of known beta-barrels was also examined. For example, the distribution of rise-per-residue values perpendicular to the bilayer plane was found to be 2.7 +/- 0.25 A per residue, or about 10 +/- 1 residues across the membrane. Also, as noted by other authors, nearly every known membrane-spanning beta-barrel strand was found to have a short loop of seven residues or less connecting it to at least one adjacent strand. Using this information we have begun to generate rapid screening algorithms for the identification of beta-barrel membrane proteins in genomic databases. Application of one algorithm to the genomes of Escherichia coli and Pseudomonas aeruginosa confirms its ability to identify beta-barrels, and reveals dozens of unidentified open reading frames that potentially code for beta-barrel outer membrane proteins.  相似文献   

11.
Zhang C  Kim SH 《Proteins》2000,40(3):409-419
The Greek key motifs are the topological signature of many beta-barrels and a majority of beta-sandwich structures. An updated survey of these structures integrates many early observations and newly emerging patterns and provides a better understanding of the unique role of Greek keys in protein structures. A stereotypical Greek key beta-barrel accommodates five or six strands and can have 12 possible topologies. All except one six-stranded topologies have been observed, and only one five-stranded topologies have been seen in actual structures. Of the representative beta-barrel structures analyzed here, half have left-handed Greek keys. This result challenges the empirical claim of the handedness regularity of Greek keys in beta-barrels. One of the five-stranded topologies that has not been observed in beta-barrels comprises two overlapping Greek keys. The two three-dimensional forms of this topology constitute a structural unit that is present in a vast majority of known beta-sandwich structures. Using this unit as the root, we have built a new taxonomy tree for the beta-sandwich folds and deduced a set of rules that appear to constrain how other beta-strands adjoin the unit to form a larger double-layered structure. These rules, though derived from a larger data set, are essentially the same as those drawn from earlier studies, suggesting that they may reflect the true topological constraints in the design of beta-sandwich structures. Finally, a novel variant of the Greek key motif (defined here as the twisted Greek key) has emerged which introduces loop crossings into the folded structures. Proteins 2000;40:409-419.  相似文献   

12.
J Skolnick  A Kolinski  R Yaris 《Biopolymers》1989,28(6):1059-1095
In the context of dynamic Monte Carlo simulations on a model protein confined to a tetrahedral lattice, the interplay of protein size and tertiary structure, and the requirements for an all-or-none transition to a unique native state, are investigated. Small model proteins having a primary sequence consisting of a central bend neutral region flanked by two tails having an alternating hydrophobic/hydrophilic pattern of residues are seen to undergo a continuous transition to a beta-hairpin collapsed state. On increasing the length of the tails, the beta-hairpin structural motif is found to be in equilibrium with a four-member beta-barrel. Further increase of the tail length results in the shift of the structural equilibrium to the four-member beta-barrel. The random coil to beta-barrel transition is of an all-or-none character, but while the central turn is always the desired native bend, the location of the turns involving the two external strands is variable. That is, beta-barrels having the external stands that are two residues out of register are also observed in the transition region. Introduction into the primary sequence of two additional regions that are at the very least neutral toward turn formation produces an all-or-none transition to the unique, native, four-member beta-barrel. Various factors that can augment the stability of the native conformation are explored. Overall, these folding simulations strongly indicate that the general rules of globular protein folding are rather robust--namely, one requires a general pattern of hydrophobic/hydrophilic residues that allow the protein to have a well-defined interior and exterior and the presence of regions in the amino acid sequence that at the very least are locally indifferent to turn formation. Since no site-specific interactions between hydrophobic and hydrophilic residues are required to produce a unique four-member beta-barrel, these simulations strongly suggest that site specificity is involved in structural fine-tuning.  相似文献   

13.
L J Reece  R Nichols  R C Ogden  E E Howell 《Biochemistry》1991,30(45):10895-10904
R67 dihydrofolate reductase (DHFR) is a novel protein that provides clinical resistance to the antibacterial drug trimethoprim. The crystal structure of a dimeric form of R67 DHFR indicates the first 16 amino acids are disordered [Matthews et al. (1986) Biochemistry 25, 4194-4204]. To investigate whether these amino acids are necessary for protein function, the first 16 N-terminal residues have been cleaved off by chymotrypsin. The truncated protein is fully active with kcat = 1.3 s-1, Km(NADPH) = 3.0 microM, and Km(dihydrofolate) = 5.8 microM. This result suggests the functional core of the protein resides in the beta-barrel structure defined by residues 27-78. To study this protein further, synthetic genes coding for full-length and truncated R67 DHFRs were constructed. Surprisingly, the gene coding for truncated R67 DHFR does not produce protein in vivo or confer trimethoprim resistance upon Escherichia coli. Therefore, the relative stabilities of native and truncated R67 DHFR were investigated by equilibrium unfolding studies. Unfolding of dimeric native R67 DHFR is protein concentration dependent and can be described by a two-state model involving native dimer and unfolded monomer. Using absorbance, fluorescence, and circular dichroism techniques, an average delta GH2O of 13.9 kcal mol-1 is found for native R67 DHFR. In contrast, an average delta GH2O of 11.3 kcal mol-1 is observed for truncated R67 DHFR. These results indicate native R67 DHFR is 2.6 kcal mol-1 more stable than truncated protein. This stability difference may be part of the reason why protein from the truncated gene is not found in vivo in E. coli.  相似文献   

14.
Curto LM  Caramelo JJ  Delfino JM 《Biochemistry》2005,44(42):13847-13857
Intestinal fatty acid binding protein (IFABP) is a 15 kDa intracellular lipid-binding protein exhibiting a beta-barrel fold that resembles a clamshell. The beta-barrel, which encloses the ligand binding cavity, consists of two perpendicular five-stranded beta-sheets with an intervening helix-turn-helix motif between strands A and B. Delta98delta (fragment 29-126 of IFABP) was obtained either in its recombinant form or by limited proteolysis with clostripain. Despite lacking extensive stretches involved in the closure of the beta-barrel, delta98delta remains soluble and stable in solution. Spectroscopic analyses by circular dichroism, ultraviolet absorption, and intrinsic fluorescence indicate that the fragment retains substantial beta-sheet content and tertiary interactions. In particular, the environment around W82 is identical in both delta98delta and IFABP, a fact consistent with the conservation in the former of all the critical amino acid residues belonging to the hydrophobic core. In addition, the Stokes radius of delta98delta is similar to that of IFABP and 16% larger than that calculated from its molecular weight (11 kDa). The monomeric status of delta98delta was further confirmed by chemical cross-linking experiments. Although lacking 25% of the amino acids of the parent protein, in the presence of GdnHCl, delta98delta unfolds through a cooperative transition showing a midpoint at 0.90 M. Remarkably, it also preserves binding activity for fatty acids (Kd = 5.1 microM for oleic acid and Kd = 0.72 microM for trans-parinaric acid), a fact that exerts a stabilizing effect on its structure. These cumulative evidences show that delta98delta adopts a monomeric state with a compact core and a loose periphery, being so far the smallest structure of its kind preserving binding function.  相似文献   

15.
The family of gamma-aminobutyric acid type A receptors (GABA(A)Rs) mediates two types of inhibition in the mammalian brain. Phasic inhibition is mediated by synaptic GABA(A)Rs that are mainly comprised of alpha(1), beta(2), and gamma(2) subunits, whereas tonic inhibition is mediated by extrasynaptic GABA(A)Rs comprised of alpha(4/6), beta(2), and delta subunits. We investigated the activation properties of recombinant alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA(A)Rs in response to GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one (THIP) using electrophysiological recordings from outside-out membrane patches. Rapid agonist application experiments indicated that THIP produced faster opening rates at alpha(4)beta(2)delta GABA(A)Rs (beta approximately 1600 s(-1)) than at alpha(1)beta(2)gamma(2S) GABA(A)Rs (beta approximately 460 s(-1)), whereas GABA activated alpha(1)beta(2)gamma(2S) GABA(A)Rs more rapidly (beta approximately 1800 s(-1)) than alpha(4)beta(2)delta GABA(A)Rs (beta < 440 s(-1)). Single channel recordings of alpha(1)beta(2)gamma(2S) and alpha(4)beta(2)delta GABA(A)Rs showed that both channels open to a main conductance state of approximately 25 pS at -70 mV when activated by GABA and low concentrations of THIP, whereas saturating concentrations of THIP elicited approximately 36 pS openings at both channels. Saturating concentrations of GABA elicited brief (<10 ms) openings with low intraburst open probability (P(O) approximately 0.3) at alpha(4)beta(2)delta GABA(A)Rs and at least two "modes" of single channel bursting activity, lasting approximately 100 ms at alpha(1)beta(2)gamma(2S) GABA(A)Rs. The most prevalent bursting mode had a P(O) of approximately 0.7 and was described by a reaction scheme with three open and three shut states, whereas the "high" P(O) mode ( approximately 0.9) was characterized by two shut and three open states. Single channel activity elicited by THIP in alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA(A)Rs occurred as a single population of bursts (P(O) approximately 0.4-0.5) of moderate duration (approximately 33 ms) that could be described by schemes containing two shut and two open states for both GABA(A)Rs. Our data identify kinetic properties that are receptor-subtype specific and others that are agonist specific, including unitary conductance.  相似文献   

16.
Huang X  Zhou HX 《Biophysical journal》2006,91(7):2451-2463
Molecular dynamics simulations were performed to unfold a homologous pair of thermophilic and mesophilic cold shock proteins at high temperatures. The two proteins differ in just 11 of 66 residues and have very similar structures with a closed five-stranded antiparallel beta-barrel. A long flexible loop connects the N-terminal side of the barrel, formed by three strands (beta1-beta3), with the C-terminal side, formed by two strands (beta4-beta5). The two proteins were found to follow the same unfolding pathway, but with the thermophilic protein showing much slower unfolding. Unfolding started with the melting of C-terminal strands, leading to exposure of the hydrophobic core. Subsequent melting of beta3 and the beta-hairpin formed by the first two strands then resulted in unfolding of the whole protein. The slower unfolding of the thermophilic protein could be attributed to ion pair formation of Arg-3 with Glu-46, Glu-21, and the C-terminal. These ion pairs were also found to be important for the difference in folding stability between the pair of proteins. Thus electrostatic interactions appear to play similar roles in the difference in folding stability and kinetics between the pair of proteins.  相似文献   

17.
Rigid-rod dendronized linear polymers consisting of a poly(4-hydroxystyrene) backbone and fourth-generation polyester dendrons were evaluated in vitro and in vivo to determine their suitability as drug delivery vectors. Cytotoxicity assays indicated that the polymers were well tolerated by cells in vitro. Biodistribution studies of the polymers in both nontumored and tumored mice revealed that as for random coil linear polymers, renal clearance was a function of polymer size, with significant urinary excretion observed for a 67 kDa dendronized polymer. High accumulation in organs of the reticuloendothelial system was exhibited by a dendronized polymer with a very high molecular weight (M(n) = 1740 kDa), but was not as significant for smaller polymers with M(n) = 67 kDa and M(n) = 251 kDa. The rank order for tumor accumulation of the polymers on a percent injected dose per gram tumor basis was 251 kDa approximately 1740 kDa > 67 kDa. These data will help guide the selection of highly functionalizable rigid-rod dendronized polymers with pharmacokinetic properties appropriate for use as drug carriers.  相似文献   

18.
19.
Thermostability is an important property of industrially significant hydrolytic enzymes: understanding the structural basis for this attribute will underpin the future biotechnological exploitation of these biocatalysts. The Cellvibrio family 10 (GH10) xylanases display considerable sequence identity but exhibit significant differences in thermostability; thus, these enzymes represent excellent models to examine the structural basis for the variation in stability displayed by these glycoside hydrolases. Here, we have subjected the intracellular Cellvibrio mixtus xylanase CmXyn10B to forced protein evolution. Error-prone PCR and selection identified a double mutant, A334V/G348D, which confers an increase in thermostability. The mutant has a Tm 8 degrees C higher than the wild-type enzyme and, at 55 degrees C, the first-order rate constant for thermal inactivation of A334V/G348D is 4.1 x 10(-4) min(-1), compared to a value of 1.6 x 10(-1) min(-1) for the wild-type enzyme. The introduction of the N to C-terminal disulphide bridge into A334V/G348D, which increases the thermostability of wild-type CmXyn10B, conferred a further approximately 2 degrees C increase in the Tm of the double mutant. The crystal structure of A334V/G348D showed that the introduction of Val334 fills a cavity within the hydrophobic core of the xylanase, increasing the number of van der Waals interactions with the surrounding aromatic residues, while O(delta1) of Asp348 makes an additional hydrogen bond with the amide of Gly344 and O(delta2) interacts with the arabinofuranose side-chain of the xylose moiety at the -2 subsite. To investigate the importance of xylan decorations in productive substrate binding, the activity of wild-type CmXyn10B, the mutant A334V/G348D, and several other GH10 xylanases against xylotriose and xylotriose containing an arabinofuranose side-chain (AX3) was assessed. The enzymes were more active against AX3 than xylotriose, providing evidence that the arabinose side-chain makes a generic contribution to substrate recognition by GH10 xylanases.  相似文献   

20.
The thermodynamics of the enzymatic hydrolysis of cellobiose, gentiobiose, isomaltose, and maltose have been studied using both high pressure liquid chromatography and microcalorimetry. The hydrolysis reactions were carried out in aqueous sodium acetate buffer at a pH of 5.65 and over the temperature range of 286 to 316 K using the enzymes beta-glucosidase, isomaltase, and maltase. The thermodynamic parameters obtained for the hydrolysis reactions, disaccharide(aq) + H2O(liq) = 2 glucose(aq), at 298.15 K are: K greater than or equal to 155, delta G0 less than or equal to -12.5 kJ mol-1, and delta H0 = -2.43 +/- 0.31 kJ mol-1 for cellobiose; K = 17.9 +/- 0.7, delta G0 = -7.15 +/- 0.10 kJ mol-1 and delta H0 = 2.26 +/- 0.48 kJ mol-1 for gentiobiose; K = 17.25 +/- 0.7, delta G0 = -7.06 +/- 0.10 kJ mol-1, and delta H0 = 5.86 +/- 0.54 kJ mol-1 for isomaltose; and K greater than or equal to 513, delta G0 less than or equal to -15.5 kJ mol-1, and delta H0 = -4.02 +/- 0.15 kJ mol-1 for maltose. The standard state is the hypothetical ideal solution of unit molality. Due to enzymatic inhibition by glucose, it was not possible to obtain reliable values for the equilibrium constants for the hydrolysis of either cellobiose or maltose. The entropy changes for the hydrolysis reactions are in the range 32 to 43 J mol-1 K-1; the heat capacity changes are approximately equal to zero J mol-1 K-1. Additional pathways for calculating thermodynamic parameters for these hydrolysis reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号