首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Global declines in biodiversity create an urgent need to address the impact of infectious disease in the small and fragmented populations that characterize threatened species. However, the paucity of empirical data provides little ability to predict whether disease generally accelerates threatened species towards extinction or becomes less important as populations decline. This study tests whether plant species threatened with extinction exhibit lower disease frequencies and lower overall parasite species richness while also experimentally testing for the effect of physiological disease resistance. Herbarium surveys of the genus Silene revealed that anther‐smut disease was significantly less frequent in threatened species than non‐threatened species, and this effect was not constrained by the host phylogeny or by physiological resistance. Moreover, analysis across a much broader range of plants (using US Federal designations) revealed that species with endangered status had significantly lower species richness of fungal pathogens than closely‐related, non‐endangered species. These results support the role of host ecology, rather than physiological resistance or phylogeny, in determining overall lower incidences and diversity of diseases in plant species threatened by extinction. Low disease incidence accompanied by susceptibility in threatened species may result from selection against costly resistance genes in the absence of disease.  相似文献   

2.
Four percent of the Australian flora is rare and endangered with over 100 taxa presumed extinct. Western Australia contains a large proportion of the endangered flora of Australia with 238 taxa in a critical state of conservation and 70 species presumed extinct. Kings Park and Botanic Garden in south-west Australia is responsible for developing specialized collections of rare and endangered indigenous flora. Macro-and micropropagation procedures are used including conventional cutting and seed propagation, grafting and in thein vitro programme whole seeds (asymbiotic and symbiotic germination), excised seed embryos, shoot apices and inflorescence sections. Wherever possible explants are collected from major provenances of the species and a wide cross section of a species population. Although many of the rare flora of Western Australia are now in theex situ collection maintained by Kings Park and Botanic Garden attempts are being made to develop slow growth storage forin vitro cultures and cryostorage. Trial recovery programmes have commenced with a number of species including the rare and endangered Purdie's donkey orchid (Diuris purdiei). Results of these recovery programmes will guide future efforts in conserving and recovering rare Australian species.  相似文献   

3.
The bryophyte Red List of Serbia and Montenegro comprises 254 species (212 mosses and 42 liverworts). Serbia and Montenegro have 39.50% of threatened bryoflora. One moss species is considered as extinct (Encalypta serbica Katic). In the threatened categories there are 20 critically endangered (CR), 35 endangered (EN) and 100 vulnerable (VU) bryophyte species. Seventy-two species are considered to be of low risk, and 36 are too data deficient to place them in any category, but potentially with further investigation will enter one of the threat categories in the Red List.  相似文献   

4.
Dioecious clades have been observed to have lower species richness than their non‐dioecious sister groups indicating that dioecious species experience higher extinction rates and (or) lower speciation rates. To determine whether current threats to biodiversity may exacerbate this pattern, we examined the threat to exclusively dioecious families of angiosperms among the 13,013 species of threatened plants included in the IUCN Red List of Threatened Species. When examined phylogenetically, dioecious families had proportionally more species listed than their sister groups. We then examined whether ecological traits correlated with dioecy, namely tropical distribution, woody growth form, and fleshy fruits, are associated with having higher proportions of threatened species. Ignoring breeding system, woody growth form was the only trait that was associated with a greater than expected proportion of threatened species per family. Red‐Listed dioecious families were more likely to have a woody growth form than non‐dioecious families. Woody growth habit is likely contributing to the higher incidence of dioecious species being at risk of extinction but is not solely responsible for the pattern because higher risk within dioecious groups was also apparent in a comparison of exclusively woody sister‐group pairs. Our results indicate that dioecious plants may warrant special attention in conservation practices.  相似文献   

5.
Effects of environmental variation on extinction and establishment   总被引:2,自引:1,他引:1  
Theoretical models predict that increasing environmental variation increases the probability of extinction, decreases the probability of establishment, and influences the distribution of times to extinction or establishment. We conducted an experiment with 281 independent populations of Daphnia magna under controlled laboratory conditions to test these predictions. Consistent with the theory, the fraction of populations going extinct increased and the fraction of populations establishing self‐sustaining populations decreased under higher levels of environmental variation compared with controls. Time to extinction decreased under higher levels of environmental variation, but we found no effect on time to establishment. These results are consistent with theoretical predictions from models of extinction. They therefore support the use of stochastic population models to predict the fates of introductions of non‐indigenous species or native endangered species based on historic fluctuations and/or expected future conditions.  相似文献   

6.
Was realized field studies and ex situ propagation on the vascular flora of Juan Fernández Archipelago during 15 year period. To evaluate the conservation status of a total of 133 species and subspecies of vascular endemic plants I used a IUCN classification founding: 2 species extinct, 1 extinct in it natural habitat, 52 critically endangered, 37 endangered and 9 vulnerable. Thus, 73.8% are contained in a threat category; only 24 taxon can be considered to be of a lesser conservation concern. The largest threat of extinction is a reduction in individuals in local populations resulting in small, isolated populations. This habitat fragmentation and a reduction in endemic flora has also impacted endemic fauna. Besides, during this period was propagated in nurseries a total of 80 of these species and subspecies (60%). It seem clear the necessity to continue to actions conserve this particular ecosystem.  相似文献   

7.
8.
In a given area, human activities usually cause the extinction of native species and the establishment of non‐native species. A key conservation issue is whether non‐native establishment tends to outpace native species extinction to produce a net gain in species richness. To determine this, empirical data must be accumulated at various scales. I show that, within the United States, the number of established non‐native plant species per state does tend to outpace the number of extinct and threatened species per state. The net gain in plant species is strongly and positively correlated with human population density. Continuation of this trend predicts substantial gains in net plant species richness for all states in the United States as human population grows. This contrasts with freshwater fishes, where most states show a net loss of species diversity as extinct and threatened species exceed established non‐native species. Changes in fish diversity do not correlate strongly with human population or non‐native species but are largely driven by the decline of native fish species.  相似文献   

9.
Secondary extinctions of dependent affiliate species may exceed the numbers of species directly extirpated with habitat loss. We investigated the host specificity, and hence the co‐extinction risk, of multiple psyllid species (Hemiptera: Psylloidea) on the threatened plants Acacia ausfeldii, A. dangarensis and A. gordonii by sampling from these and other sympatric common plants across multiple sites, years and plant phenologies. We found one specialist psyllid species (Psyllidae: Acizzia sp.) on each of the plants A. ausfeldii and A. gordonii but no specialists on A. dangarensis. The A. gordonii specialist only occurred when its host was in flower. Specialist psyllids considered at risk of extinction represented 10% of all psyllid species observed on the three threatened acacias. Potential risks to co‐endangered affiliates need to be considered when implementing threatened plant recovery actions. Conservation of plant populations and plant species diversity is also necessary to maintain high insect diversity.  相似文献   

10.

Aim

To investigate the impact of different treatments of the IUCN Data Deficient (DD) category on taxonomic and geographical patterns of extinction risk in crayfish, freshwater crabs and dragonflies.

Location

Global.

Methods

We used contingency tables to evaluate taxonomic and geographical selectivity of data deficiency and extinction risk for three invertebrate taxonomic groups (crayfish, dragonflies and damselflies, and freshwater crabs) based on their IUCN Red List status. We investigated differences in patterns of data deficiency and extinction risk among taxonomic families, geographical realms and taxonomic families within geographical realms for each of the three groups. At each level, we evaluated the impact of uncertainty conferred by the conservation status of DD species on extinction risk patterns exhibited by that group. We evaluated three scenarios: excluding DD species, treating all DD species as non‐threatened and treating all DD species as threatened.

Results

At the global scale, DD species were taxonomically non‐randomly distributed in freshwater crabs and dragonflies, and geographically non‐randomly distributed in all three taxonomic groups. Although the presence of under‐ or over‐threatened families and biogeographical realms was generally unchanging across scenarios, the strength of taxonomic and geographical selectivity of extinction risk varied. There was little consistent evidence for taxonomic selectivity of extinction risk at sub‐global scales in freshwater crabs and dragonflies, either among biogeographical realms or among scenarios.

Main conclusions

Global patterns of taxonomic selectivity and geographical selectivity were generally consistent with one another and robust to different treatments of DD species. However, sub‐global scale conservation prioritization from these types of data sets will require increased investment to make accurate decisions. Given the current levels of data uncertainty, the relative importance of biological characteristics and threatening processes in driving extinctions in freshwater invertebrates cannot be easily determined. We recommend that DD species should be given high research priority to determine their true status.  相似文献   

11.
Will the ongoing extinction crisis cause a severe loss of evolutionary information accumulated over millions of years on the tree of life? This question has been largely explored, particularly for vertebrates and angiosperms. However, no equivalent effort has been devoted to gymnosperms. Here, we address this question focusing on cycads, the gymnosperm group exhibiting the highest proportion of threatened species in the plant kingdom. We assembled the first complete phylogeny of cycads and assessed how species loss under three scenarios would impact the cycad tree of life. These scenarios are as follows: (1) All top 50% of evolutionarily distinct (ED ) species are lost; (2) all threatened species are lost; and (3) only all threatened species in each IUCN category are lost. Finally, we analyzed the biogeographical pattern of cycad diversity hotspots and tested for gaps in the current global conservation network. First, we showed that threatened species are not significantly clustered on the cycad tree of life. Second, we showed that the loss of all vulnerable or endangered species does not depart significantly from random loss. In contrast, the loss of all top 50% ED , all threatened or all critically endangered species, would result in a greater loss of PD (Phylogenetic Diversity) than expected. To inform conservation decisions, we defined five hotpots of diversity, and depending on the diversity metric used, these hotspots are located in Southern Africa, Australia, Indo‐Pacific, and Mexico and all are found within protected areas. We conclude that the phylogenetic diversity accumulated over millions of years in the cycad tree of life would not survive the current extinction crisis. As such, prioritizing efforts based on ED and concentrating efforts on critically endangered species particularly in southern Africa, Australia, Indo‐Pacific, and Mexico are required to safeguarding the evolutionary diversity in the cycad tree of life.  相似文献   

12.
Parrots (Psittaciformes) are among the most threatened bird orders with 28 % (111 of 398) of extant species classified as threatened under IUCN criteria. We confirmed that parrots have a lower Red List Index (higher aggregate extinction risk) than other comparable bird groups, and modeled the factors associated with extinction risk. Our analyses included intrinsic biological, life history and ecological attributes, external anthropogenic threats, and socio-economic variables associated with the countries where the parrot species occur, while we controlled for phylogenetic dependence among species. We found that the likelihood of parrot species being classified as threatened was less for species with larger historical distribution size, but was greater for species with high forest dependency, large body size, long generation time, and greater proportion of the human population living in urban areas in the countries encompassing the parrots’ home ranges. The severity of extinction risk (from vulnerable to critically endangered) was positively related to the per capita gross domestic product (GDP) of the countries of occurrence, endemism to a single country, and lower for species used as pets. A disproportionate number of 16 extinct parrot species were endemic to islands and single countries, and were large bodied, habitat specialists. Agriculture, hunting, trapping, and logging are the most frequent threats to parrots worldwide, with variation in importance among regions. We use multiple methods to rank countries with disproportionately high numbers of threatened parrot species. Our results promote understanding of global and regional factors associated with endangerment in this highly threatened taxonomic group, and will enhance the prioritization of conservation actions.  相似文献   

13.
Huang D 《PloS one》2012,7(3):e34459
A substantial proportion of the world's living species, including one-third of the reef-building corals, are threatened with extinction and in pressing need of conservation action. In order to reduce biodiversity loss, it is important to consider species' contribution to evolutionary diversity along with their risk of extinction for the purpose of setting conservation priorities. Here I reconstruct the most comprehensive tree of life for the order Scleractinia (1,293 species) that includes all 837 living reef species, and employ a composite measure of phylogenetic distinctiveness and extinction risk to identify the most endangered lineages that would not be given top priority on the basis of risk alone. The preservation of these lineages, not just the threatened species, is vital for safeguarding evolutionary diversity. Tests for phylogeny-associated patterns show that corals facing elevated extinction risk are not clustered on the tree, but species that are susceptible, resistant or resilient to impacts such as bleaching and disease tend to be close relatives. Intensification of these threats or extirpation of the endangered lineages could therefore result in disproportionate pruning of the coral tree of life.  相似文献   

14.
Species delimitation has important consequences for the management of endangered species. Species‐level taxonomy in the genus Crypturellus (Tinamidae) has been based largely on plumage characters and species limits in several groups have been difficult to establish. Because some of the forms of uncertain taxonomic status are currently threatened with extinction, a basic understanding of species limits is crucial not only for taxonomists but also for conservation biologists and managers. We analysed vocal variation to assess species limits in two Crypturellus species‐groups, the red‐legged complex (Crypturellus erythropus and allied forms) and the brown tinamou Crypturellus obsoletus. In the red‐legged complex, where several species‐level taxa have been recognized by some authors, there is no obvious geographic variation in vocalizations and populations appear mostly continuously distributed, with plumage variation largely explicable in terms of environmental conditions. In the brown group, a single species is recognized, but we found marked geographic variation in vocalizations and populations have disjunct distributions; we propose that at least one of the populations in this group likely merits recognition as a separate species. We conclude that incomplete knowledge of patterns of variation in relevant traits in addition to the momentum carried by traditional taxonomy may potentially mislead conservation actions.  相似文献   

15.
Abstract

In the present study, species were selected from the new Red List of the vascular flora of Hungary which can be regarded as a weed. For each species, current conservation status and the most important traits were assessed. Altogether 149 weed species were found to be at risk according to the International Union for Conservation of Nature (IUCN) categories: 11 species are extinct, 11 are critically endangered, 27 are endangered, 26 are vulnerable, 62 are near threatened and 12 are data deficient. These species belong to 37 plant families, from which the most important are Caryophyllaceae, Brassicaceae, Asteraceae, Scrophulariaceae, Chenopodiaceae, Poaceae and Fabaceae. The most significant chorological elements are Mediterranean (28%) and Eurasian (27%); endemic (Pannonian) taxa constitute only 5.4%. Over 90% of these species are of native or archaeophyte origin, according to their residence time. Considering the main habitat types, 46% of the species are originated from dry habitats, 23% from arable lands, 17.5% from wet habitats and 13.5% from ruderal habitats. In the life form spectra, a pronounced dominance of therophytes (81%) is represented. The factor that currently offers the greatest conflict to the conservation of endangered weed species in Hungary are side effects of strong eradication campaigns against the invasive Ambrosia artemisiifolia.  相似文献   

16.
17.
Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (< 9%) have a fossil record, compared with 20% of non‐threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19th century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record.  相似文献   

18.
19.
There is an urgent need to reduce drastically the rate at which biodiversity is declining worldwide. Phylogenetic methods are increasingly being recognised as providing a useful framework for predicting future losses, and guiding efforts for pre-emptive conservation actions. In this study, we used a reconstructed phylogenetic tree of angiosperm species of the Eastern Arc Mountains – an important African biodiversity hotspot – and described the distribution of extinction risk across taxonomic ranks and phylogeny. We provide evidence for both taxonomic and phylogenetic selectivity in extinction risk. However, we found that selectivity varies with IUCN extinction risk category. Vulnerable species are more closely related than expected by chance, whereas endangered and critically endangered species are not significantly clustered on the phylogeny. We suggest that the general observation for taxonomic and phylogenetic selectivity (i.e. phylogenetic signal, the tendency of closely related species to share similar traits) in extinction risks is therefore largely driven by vulnerable species, and not necessarily the most highly threatened. We also used information on altitudinal distribution and climate to generate a predictive model of at-risk species richness, and found that greater threatened species richness is found at higher altitude, allowing for more informed conservation decision making. Our results indicate that evolutionary history can help predict plant susceptibility to extinction threats in the hyper-diverse but woefully-understudied Eastern Arc Mountains, and illustrate the contribution of phylogenetic approaches in conserving African floristic biodiversity where detailed ecological and evolutionary data are often lacking.  相似文献   

20.
Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号