首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
崔洪莹  苏建伟  戈峰 《昆虫知识》2011,48(5):1130-1140
臭氧(O3)是最具危害性的空气污染物之一。目前流层中的臭氧水平从100多年前的10ppb到今天的40ppb,预计到2050年将达到68ppb左右。臭氧通过改变植物"质量"而影响植食性昆虫的取食偏嗜性、行为、生长和发育,进而影响天敌昆虫的适合度。臭氧还通过改变化学信息物质而影响昆虫的行为。本文根据国内外研究进展,结合作者的研究,论述了大气臭氧浓度升高对刺吸式昆虫、咀嚼式昆虫和天敌昆虫的影响,展望了未来研究的前景。  相似文献   

2.
全球气候变化已成为农业生产的重要限制因子.它不仅直接影响植物的净初级生产力,同时还影响植物病虫害的发生.因此国内外非常重视病虫害对全球气候变化中的温室气体(二氧化碳和臭氧)增高的响应研究.二氧化碳或臭氧浓度增高影响植物的生理过程,进而通过寄主植物的"上行效应"影响植物病虫害的发生.已有的研究表明,二氧化碳或臭氧浓度升高可通过降低植物氮营养,影响媒介昆虫或植物病毒的发生;而且最近的研究发现,植物激素信号通路在调控媒介昆虫和植物病毒响应二氧化碳和臭氧浓度升高中发挥重要作用.本文根据国内外的研究和本研究组取得的进展,系统地阐述了二氧化碳和臭氧浓度升高如何通过改变激素信号介导的植物抗性代谢进而影响植物病毒-植物-媒介昆虫三者互作关系.  相似文献   

3.
O3浓度升高对植物活性氧代谢系统影响的研究进展   总被引:1,自引:0,他引:1  
为了揭示臭氧(O3)浓度升高对植物活性氧代谢系统的影响机理,从代谢生理角度,总结了近年来国内外关于臭氧浓度升高对植物活性氧自由基代谢速率、细胞膜脂过氧化程度、抗氧化系统及生物量和产量影响的研究进展,同时,就臭氧浓度升高与二氧化碳浓度升高的复合作用对植物活性氧代谢系统的影响,及阐明二者相互作用对植物抗氧化系统影响机理的研究进行了综述。在此基础上指出在未来研究中,要在分子水平上进一步深入研究植物活性氧代谢系统对高浓度臭氧、二氧化碳复合作用的响应机理,并应加强高浓度二氧化碳对臭氧胁迫下植物抗氧化系统影响的研究,为解决如何减轻臭氧浓度升高对植物造成的氧化伤害提供基础理论依据。  相似文献   

4.
陈澄宇  康志娇  史雪岩  高希武 《昆虫学报》2015,58(10):1126-1130
植物次生物质(plant secondary metabolites)对昆虫的取食行为、生长发育及繁殖可以产生不利影响,甚至对昆虫可以产生毒杀作用。为了应对植物次生物质的不利影响,昆虫通过对植物次生物质忌避取食、解毒代谢等多种机制,而对寄主植物产生适应性。其中,昆虫的解毒代谢酶包括昆虫细胞色素P450酶系(P450s)及谷胱甘肽硫转移酶(GSTs)等,在昆虫对植物次生物质的解毒代谢及对寄主植物的适应性中发挥了重要作用。昆虫的解毒酶系统不仅可以代谢植物次生物质,还可能代谢化学杀虫剂,因而昆虫对寄主植物的适应性与其对杀虫剂的耐药性甚至抗药性密切相关。昆虫细胞色素P450s和GSTs等代谢解毒酶活性及相关基因的表达可以被植物次生物质影响,这不仅使昆虫对寄主植物的防御产生了适应性,还影响了昆虫对杀虫剂的解毒代谢,因而改变昆虫的耐药性或抗药性。掌握昆虫对植物次生物质的代谢适应机制及其在昆虫抗药性中的作用,对于明确昆虫的抗药性机制具有重要的参考意义。本文综述了植物次生物质对昆虫的影响、昆虫对寄主植物次生物质的代谢机制、昆虫对植物次生物质的代谢适应性对昆虫耐药性及抗药性的影响等方面的研究进展。  相似文献   

5.
臭氧是重要的温室气体之一,大气中臭氧浓度不断增加.高浓度臭氧对植物有高度毒性,能够给植物带来可见的叶片伤害,体内活性氧水平上升,同时也能刺激植物体内抗氧化系统的活性.目前高浓度臭氧对植物抗氧化系统的影响已经成为植物对全球变化响应研究的重要方向之一.本文综述了国内外关于高浓度臭氧对植物的毒害机理、植物对于高浓度臭氧伤害的抵御反应、以及在高浓度臭氧与CO2复合作用对植物影响的相关报道,以期改善人们对臭氧浓度升高对植物影响的理解.  相似文献   

6.
由于全球气候变化,CO_2浓度升高对生态系统产生的影响已成为国际关注的焦点。媒介昆虫传毒引起的植物病毒病是农业生产的一个重要影响因素之一。"CO_2-植物-媒介昆虫-病毒"是一个复杂的系统,围绕CO_2浓度升高对植物的影响、CO_2浓度升高对"植物-媒介昆虫"相互关系以及CO_2浓度升高对媒介昆虫及其传播病毒发生的影响已开展了大量研究。本文主要从CO_2浓度升高对植物、CO_2浓度升高对媒介昆虫和植物以及CO_2浓度升高对媒介昆虫所传病毒发生等方面阐述CO_2浓度升高对媒介昆虫及所传植物病毒发生的影响。研究表明,CO_2浓度升高对于媒介昆虫和病毒本身的直接影响较小,主要影响植物初级和次生代谢过程,主要通过引起植物在基因表达、生理生化、营养水平以及生长等各个层面的变化来影响植物,从而通过级联效应改变"植物-媒介昆虫-病毒"之间的互作关系。  相似文献   

7.
臭氧对生态系统地下过程的影响   总被引:9,自引:2,他引:7  
对流层中高浓度的臭氧是一种严重危害植物的大气污染物,臭氧浓度的升高会对作物、林木等产生一系列的损害。本文综述了大气臭氧浓度升高对生态系统地下过程的影响,包括植物根系、根系分泌物、菌根、土壤-根呼吸、土壤酶以及土壤微生物的影响研究进展;阐述了目前研究中存在的争论以及今后需要研究的领域和方向。  相似文献   

8.
孙玉诚  郭慧娟  刘志源  戈峰 《昆虫知识》2011,48(5):1123-1129
大气二氧化碳浓度升高及其伴随的全球变暖引起国内外科学家的极大关注。CO2浓度升高主要通过改变植物的初级和次级代谢产物,影响以之为食的昆虫。本文结合作者近年来的研究成果,着重于以CO2浓度升高为作用因子,以植物和植食性昆虫的相互关系为对象,比较了咀嚼式口器昆虫与刺吸式口器昆虫对大气CO2浓度升高的响应特征,分析了不同取食类型昆虫-植物对大气CO2浓度升高的响应机制。  相似文献   

9.
臭氧浓度升高对盆栽小麦根系和土壤微生物功能的影响   总被引:11,自引:0,他引:11  
模拟研究了臭氧浓度升高(日变化熏蒸方式)对小麦根系和土壤微生物活性的影响。实验分3个处理,即空气对照(CF,臭氧浓度约4~10nl·L^-1),臭氧浓度Ⅰ(OⅠ,8h平均75nl·L^-1),臭氧浓度Ⅱ(OⅡ,8h平均110nl·L^-1)。结果表明,臭氧浓度升高后小麦茎叶、根系生物量以及根冠比都会降低,根系活力更是显著低于空气对照,可见臭氧对植物地下部分的影响是显著的。与对照相比,低浓度O3(75nl·L^-1)对根际土和非根际土的微生物生物量碳没有什么影响;而较高的O3浓度(110nl·L^-1)会造成根际土微生物生物量碳降低9.3%,非根际土微生物生物量碳降低5.3%,说明高浓度臭氧抑制土壤微生物的量。臭氧浓度升高后小麦根际土壤微生物利用单一碳源的能力(AWCD)都明显低于对照;低浓度的臭氧对土壤微生物的多样性指数和丰富度指数都没有显著影响,而浓度较高的臭氧则显著降低了根际土微生物的多样性指数,而对丰富度指数没有显著影响,且也没有发现O3浓度升高对非根际土微生物的影响。可见,臭氧主要影响根际土壤微生物而对非根际土壤微生物影响不大,且只有在高浓度的臭氧处理下才会显著降低根际土壤微生物的多样性指数。  相似文献   

10.
本研究设置2个臭氧浓度处理,即空气对照(CK,臭氧浓度约4~10 nL·L-1),臭氧浓度升高处理(O3,8 h平均浓度为110 nL·L-1),利用13C同位素示踪的方法,模拟研究了臭氧浓度升高对水稻碳固定和迁移的影响。结果表明:臭氧浓度升高后减少了植株对13C的固定,两次标记时臭氧处理下植株总的13C固定分别比对照处理低37.8%和20.0%;臭氧浓度升高处理1个月和2个月后叶片的13C分配相对于对照而言分别提高了47.3%和37.5%;而臭氧处理则降低了茎和根中的碳分配;臭氧浓度升高后叶的库强有明显的提高,而根的库强则明显降低,茎的库强虽有所降低但不明显;臭氧处理1个月和2个月后植株叶片的相对吸收能力分别比对照显著提高了48.5%和93.3%,臭氧处理下根的相对吸收能力则显著降低。  相似文献   

11.
Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest ecosystem management should pay more attention to insect pest, especially in the regions dominated by broadleaves.  相似文献   

12.
1. Elevated CO2 can alter plant physiology and morphology, and these changes are expected to impact diet quality for insect herbivores. While the plastic responses of insect herbivores have been well studied, less is known about the propensity of insects to adapt to such changes. Genetic variation in insect responses to elevated CO2 and genetic interactions between insects and their host plants may exist and provide the necessary raw material for adaptation. 2. We used clonal lines of Rhopalosiphum padi (L.) aphids to examine genotype‐specific responses to elevated CO2. We used the host plant Schedonorus arundinaceus (tall fescue; Schreb), which is capable of asexual reproduction, to investigate host plant genotype‐specific effects and possible host plant‐by‐insect genotype interactions. The abundance and density of three R. padi genotypes on three tall fescue genotypes under three concentrations of CO2 (ambient, 700, and 1000 ppm) in a controlled greenhouse environment were examined. 3. Aphid abundance decreased in the 700 ppm CO2 concentration, but increased in the 1000 ppm concentration relative to ambient. The effect of CO2 on aphid density was dependent on host plant genotype; the density of aphids in high CO2 decreased for two plant genotypes but was unchanged in one. No interaction between aphid genotype and elevated CO2 was found, nor did we find significant genotype‐by‐genotype interactions. 4. This study suggests that the density of R. padi aphids feeding on tall fescue may decrease under elevated CO2 for some plant genotypes. The likely impact of genotype‐specific responses on future changes in the genetic structure of plant and insect populations is discussed.  相似文献   

13.
Aims Elevated CO2 and increased N availability can alter a variety of plant physiological processes leading to changes in the nutritional quality of leaf tissue for herbivores. Numerous experiments have examined the responses of herbivores to environmental change; however the potential effects of simultaneous change in multiple factors on leaf-chewing insect herbivores are less well understood. The plant-mediated effects of elevated CO2 and high N on the performance of a generalist leaf-chewing insect herbivore, Trichoplusia ni, were investigated.Methods Newly hatched T. ni larvae were introduced to Amaranthus viridis and Polygonum persicaria plants grown under ambient and elevated CO2 and low and high N conditions. Insect performance was assessed by measuring larvae weight after ten days of feeding. Plant photosynthesis, biomass, leaf area and specific leaf weight were measured to determine the effects of elevated CO2, N and insect feeding on plant performance.Important findings Elevated CO2 did not have strong effects on plant or insect performance, only affecting a few responses under low or high N conditions, but not both. Growth under high nitrogen improved almost all measures of plant performance. Trichoplusia ni performed significantly better on Amaranthus viridis (C 4) compared to Polygonum persicaria (C 3), despite similar leaf C:N ratios in both species. The performance of T. ni caterpillars was only improved by the high nitrogen treatment when they were feeding on P. persicaria, the host they performed poorly on. The only interactions between N and CO2 affecting plant performance were seen for leaf photosynthesis of P. persicaria and leaf area of A. viridis. Contrary to the predictions, there were no significant CO2 by N interactions affecting T. ni performance.  相似文献   

14.
We reviewed the effects of elevated ozone (O3), alone and in combination with elevated carbon dioxide (CO2) on primary and secondary metabolites of trees and performance of insect herbivores by means of meta‐analysis. Our database consisted of 63 studies conducted on 22 species of trees and published between 1990 and 2005. Ozone alone had no overall effect on concentrations of carbohydrates or nutrients, whereas in combination with CO2, elevated O3 reduced nutrient concentrations and increased carbohydrate concentrations. In contrast to primary metabolites, concentrations of phenolics and terpenes were significantly increased by 16% and 8%, respectively, in response to elevated O3. Effects of ozone in combination with elevated CO2 were weaker than those of ozone alone on phenolics, but stronger than those of ozone alone on terpenes. The magnitude of secondary metabolite responses depended on the type of ozone exposure facility and increased in the following order: indoor growth chamber 3 than gymnosperms, as shifts in concentrations of carbohydrate and phenolics were observed in the former, but not in the latter. Elevated O3 had positive effects on some indices of insect performance: pupal mass increased and larval development time shortened, but these effects were counteracted by elevated CO2. Therefore, despite the observed increase in secondary metabolites, elevated O3 tends to increase tree foliage quality for herbivores, but elevated CO2 may alleviate these effects. Our meta‐analysis clearly demonstrated that effects of elevated O3 alone on leaf chemistry and some indices of insect performance differed from those of O3+CO2, and therefore, it is important to study effects of several factors of global climate change simultaneously.  相似文献   

15.
We studied the effects of elevated ultraviolet-B radiation on interactions between insect herbivores and their host plants by exposing two species of phytochemically different willows, Salix myrsinifolia and S. phylicifolia, to a modulated increase in ultraviolet radiation in an outdoor experiment and monitoring the colonisation of insect herbivores on these willows. We examined the effect of increased ultraviolet-B (UV-B) radiation on (1) the quality of willow leaves, (2) the distribution and abundance of insect herbivores feeding on these willows, (3) the resulting amount of damage, and (4) the performance of insect larvae feeding on the exposed plant tissue. Six clones of each of the two willow species were grown in eight blocks for 12 weeks in the UV-B irradiation field. The clones were exposed to a constant 50% increase in UV-B radiation (simulating 20-25% ozone depletion), to a small increase in UV-A radiation or to ambient solar irradiation. We allowed colonisation on the willows by naturally occurring insects, but also introduced adults of a leaf beetle, Phratora vitellinae, a specialist herbivore on S. myrsinifolia. Increased UV-B radiation did not affect any of the measured indices of plant quality. However, numbers of P. vitellinae on S. myrsinifolia were higher in plants with UV-B treatment compared with UV-A and shade controls. In laboratory tests, growth of the second-instar larva of P. vitellinae was not affected by UV-B treatment of S. myrsinifolia, but was retarded on UV-B treated leaves of S. phylicifolia. In addition, naturally occurring insect herbivores were more abundant on willows exposed to elevated UV-B radiation compared to those grown under control treatments. In spite of the increased abundance of insect herbivores, willows treated with elevated UV-B did not suffer more herbivore damage than willows exposed to ambient solar radiation (shade control). The observed effects of UV-B on herbivore abundance, feeding and growth varied significantly due to spatial variation in environment quality, as indicated by the UV-treatment x block interaction. The results suggest that (1) environmental variation modifies the effects of UV-B radiation on plant-insect interactions and (2) specialist herbivores might be more sensitive to chemical changes in their secondary host plants (S. phylicifolia) than to changes in their primary hosts (S. myrsinifolia).  相似文献   

16.
By altering myriad aspects of leaf chemistry, increasing concentrations of CO2 and O3 in the atmosphere derived from human activities may fundamentally alter the relationships between insect herbivores and plants. Because exposure to elevated CO2 can alter the nutritional value of leaves, some herbivores may increase consumption rates to compensate. The effects of O3 on leaf nutritional quality are less clear; however, increased senescence may also reduce leaf quality for insect herbivores. Additionally, changes in secondary chemistry and the microclimate of leaves may render plants more susceptible to herbivory in elevated CO2 and O3. Damage to soybean (Glycine max L.) leaves and the size and composition of the insect community in the plant canopy were examined in large intact plots exposed to elevated CO2 (~550 μmol mol−1) and elevated O3 (1.2*ambient) in a fully factorial design with a Soybean Free Air Concentration Enrichment system (SoyFACE). Leaf area removed by folivorous insects was estimated by digital photography and insect surveys were conducted during two consecutive growing seasons, 2003 and 2004. Elevated CO2 alone and in combination with O3 increased the number of insects and the amount of leaf area removed by insect herbivores across feeding guilds. Exposure to elevated CO2 significantly increased the number of western corn rootworm (Diabrotica virgifera) adults (foliage chewer) and soybean aphids (Aphis glycines; phloem feeder). No consistent effect of elevated O3 on herbivory or insect population size was detected. Increased loss of leaf area to herbivores was associated with increased carbon-to-nitrogen ratio and leaf surface temperature. Soybean aphids are invasive pests in North America and new to this ecosystem. Higher concentrations of CO2 in the atmosphere may increase herbivory in the soybean agroecosystem, particularly by recently introduced insect herbivores. Handling editor: Gary Felton.  相似文献   

17.
Several plant species defend themselves indirectly from herbivores by producing herbivore-induced volatile compounds that attract the natural enemies of herbivores. Here we tested the effects of elevated atmospheric CO(2) (720 micromol mol(-1)) concentration on this indirect defense, physiological properties, and constitutive and induced emissions of white cabbage (Brassica oleracea ssp. capitata, cvs Lennox and Rinda). We monitored the orientation behavior of the generalist predator Podisus maculiventris (Heteroptera: Pentatomidae) and the specialist parasitoid Cotesia plutellae (Hymenoptera: Braconidae) to plants damaged by Plutella xylostella (Lepidoptera: Plutellidae) in the Y-tube olfactometer. Elevated CO(2) levels did not affect stomatal densities but reduced specific leaf area and increased leaf thickness in cv Lennox. In addition to enhanced constitutive monoterpene emission, P. xylostella-damaged cabbages emitted homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene, sesquiterpene (E,E)-alpha-farnesene, and (Z)-3-hexenyl acetate. Growth at elevated CO(2) had no significant effect on the emissions expressed per leaf area, while minor reduction in the emission of homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-alpha-farnesene was observed at elevated CO(2) in one of two experiments. The generalist predator P. maculiventris discriminated only between the odors of intact and P. xylostella-damaged cv Rinda plants grown at ambient CO(2) concentration, preferring the odor of the damaged plants. The specialist parasitoid C. plutellae preferred the odor of damaged plants of both cultivars grown at ambient CO(2) but did not detect damaged cv Lennox plants grown at elevated CO(2). The results suggest that elevated atmospheric CO(2) concentration could weaken the plant response induced by insect herbivore feeding and thereby lead to a disturbance of signaling to the third trophic level.  相似文献   

18.
依托中国稻田臭氧FACE(free air ozone concentration enrichment)技术平台,以超级稻Ⅱ优084为供试材料,臭氧设置当前大气臭氧浓度和高臭氧浓度(比前者高50%),移栽密度设置低密度(16穴·m-2)、中密度(24穴·m-2)和高密度(32穴·m-2),研究不同移栽密度条件下近地层臭氧浓度升高对水稻光合作用、物质生产以及茎鞘非结构性碳水化合物浓度和含量的影响.结果表明: 臭氧浓度升高使水稻移栽后63 d、77 d和86 d剑叶SPAD值分别下降6%、11%和13%,均达显著或极显著水平.臭氧胁迫下结实期叶片净光合速率、气孔导度和蒸腾速率的降幅亦随时间推移而明显增加.高臭氧浓度使水稻抽穗至成熟期的物质生产量平均下降46%,从而使最终生物产量下降25%,均达显著水平.臭氧浓度升高使水稻拔节后茎鞘可溶性糖和淀粉的浓度和含量均显著降低,但使抽穗前茎鞘贮藏同化物的转运率大幅增加.方差分析表明,臭氧与密度间的互作对水稻所有测定参数均无显著影响.综上,近地层臭氧浓度升高使超级稻Ⅱ优084生育中后期的光合和生长均明显受抑,但这种抑制作用不受移栽密度的影响.
  相似文献   

19.
There is increasing concern over the potential impact of anthropogenic factors (e.g. increasing nutrient inputs, global climate change) on the rate of loss of diversity in ecosystems. Such losses may affect ecosystem processes. In addition, a change in diversity of one group of organisms may influence the diversity of species of the next trophic level. We examined the extent to which plant species richness influences that of insect herbivores in two systems: a long‐term field experiment on heather moorland and a model community in the Ecotron controlled environment facility. We examined the response of these two plant communities to environmental change, specifically increased levels of nutrients, grazing and atmospheric CO2. We measured the indirect effects of changes in these factors on insect herbivores, both above‐ and below‐ground. In the moorland system, grazing was the largest influence on plant community structure. The community was dominated by one species, Calluna vulgaris, and loss of cover under heavy grazing allowed competing species to invade. However, grazing regime was not a major influence on the species richness of the insect herbivore community. Site was more important: there were a greater number of Hemiptera species on sites with more mineral soils than on peat sites, possibly because a greater variety of grass and herb species was present on the former sites. In the Ecotron, below‐ground factors were also important drivers of community change: elevated CO2 increased carbon availability in the soil and there were simultaneous changes in the community composition of soil biota. Above‐ground, some plant species increased in abundance and others decreased, leading to interaction‐specific effects on the insect herbivores. In two very different studies of the effects of environmental change on the interactions between plants and their herbivores, several similar conclusions can be drawn: (1) effects are likely to be site‐ and interaction‐specific; (2) outcomes are likely to be strongly dependent on the initial state and the dominant species of the plant community; and (3) indirect effects, often mediated by below‐ground factors, may have a bigger influence on insect‐plant interactions than more direct effects of above‐ground factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号