首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
In an attempt to estimate the number of pigment precursor cells in sea urchin embryos, DNA synthesis and cell divisions were blocked with aphidicolin from various stages of development. Interestingly, pigment cells differentiated on a normal time schedule, even if the embryos were treated from late cleavage stages on. In most of the embryos treated from 10 h on, 10-15 pigment cells differentiated. Thereafter, the number of pigment cells in the aphidicolin-treated embryos further increased, as the initiation of the treatment was delayed. On the other hand, total cell volumes in the pigment lineage, calculated from the averaged number and diameter of differentiated pigment cells, were almost the same irrespective of the time of the initiation of aphidicolin treatment. This indicated that the increase in the number was caused by divisions of the pre-existing cells in the pigment lineage. Thus, the founder cells that exclusively produce pigment cells could be identified. They are nine times-cleaved blastomeres and specified by 10 h post-fertilization. The obtained results also clarified the division schedule in the pigment lineage; the founder cells divide once (10th) until hatching, and divide once more (11th) by the end of gastrulation.  相似文献   

2.
Four types of mesoderm cells (pigment cells, blastocoelar cells, coelomic pouch cells and circumesophageal muscle cells) are derived from secondary mesenchyme cells (SMC) in sea urchin embryos. To gain information on the specification and differentiation processes of SMC-derived cells, we studied the exact number and division cycles of each type of cell in Hemicentrotus pulcherrimus. Numbers of blastocoelar cells, coelomic pouch cells and circumesophageal muscle fibers were 18.0 +/- 2.0 (36 h post-fertilization (h.p.f.)), 23.0 +/- 2.5 (36 h.p.f.) and 9.5 +/- 1.3 (60 h.p.f.), respectively, whereas the number of pigment cells ranged from 40 to 60. From the diameters of blastocoelar cells and coelomic pouch cells, the numbers of division cycles were elucidated; these two types of cells had undertaken 11 rounds of cell division by the prism stage, somewhat earlier than pigment cells. To determine the relationship among the four types of cells, we tried to alter the number of pigment cells with chemical treatment and found that CH3COONa increased pigment cells without affecting embryo morphology. Interestingly, the number of blastocoelar cells became smaller in CH3COONa-treated embryos. In contrast, blastocoelar cells were markedly increased with NiCl2 treatment, whereas the number of pigment cells was markedly decreased. The number of coelomic pouch cells and circumesophageal muscle fibers was not affected with these treatments, indicating that coelomic pouch and muscle cells are specified independently of, or at much later stages, than pigment and blastocoelar cells.  相似文献   

3.
The behavior of pigment cells in sea urchin embryos, especially at the gastrula stage, is not well understood, due to the lack of an appropriate method to detect pigment cells. We found that pigment cells emanated autofluorescence when they were fixed with formalin and irradiated with ultraviolet or green light. In Hemicentrotus pulcherrimus, fluorescent pigment cells became visible at the archenteron tip at the mid-gastrula stage. The cells detached from the archenteron slightly before the initiation of secondary invagination and migrated toward the apical plate. Most pigment cells entered the apical plate. This entry site seemed to be restricted, because pigment cells could not enter the ectoderm and remained in the blastocoele at the vegetal pole side when elongation of archenteron was blocked. Pigment cells that had entered the apical plate soon began to migrate in the aboral ectoderm toward the vegetal pole. In contrast, pigment cells of Scaphechinus mirabilis embryos were first detected in the vegetal plate before the onset of gastrulation. Without entering the blastocoele, these cells began to migrate preferentially in the aboral ectoderm toward the animal pole. When the archenteron tip reached the apical plate, pigment cells had already distributed throughout the aboral ectoderm. Thus, the behavior of pigment cells was quite different between H. pulcherrimus and S. mirabilis.  相似文献   

4.
A factor which dissolves the vitelline layer was extracted from sperm of the sea urchin, Hemicentrotus pulcherrimus. Turbidity of the suspension was reduced when isolated vitelline layers were mixed with this sperm factor. When the mixture was subjected to SDS polyacrylamide gel electrophoresis, some of the protein bands of the vitelline layer were seen to be missing. The lytic activity of the factor was heat labile, completely inhibited by L-1-tosyl-amide-2-phenyl-ethylchloromethyl ketone and partially inhibited by soybean trypsin inhibitor. Chymotrypsin activity was detected, but not trypsin, arylsulfatase, or glycosidase. These results suggest that a chymotrypsin-like enzyme participates in lysis of the vitelline layer by the fertilizing spermatozoon.  相似文献   

5.
Ultrastructural changes in the maturing oocyte of the sea urchin Hemicentrotus pulcherrimus were observed, with special reference to the behavior of centrioles and chromosomes, using oocytes that had spontaneously started the maturation division process in vitro after dissection from ovaries. The proportion of oocytes entering the maturation process differed from batch to batch. In those eggs that accomplished the maturation division, it took ~4.5-5 h from the beginning of germinal vesicle breakdown to the formation of a second polar body. Serial sections revealed that a young oocyte before germinal vesicle breakdown had a pair of centrioles with procentrioles, located between the presumed animal pole and the germinal vesicle and accompanied by amorphous aggregates of moderately dense material and dense granules (granular aggregate). Just before germinal vesicle breakdown, a pair of fully grown centrioles located in the granular aggregate, which is present until this stage and then disappears, had already separated from another pair of centrioles. In meiosis I, each division pole had two centrioles, whereas in meiosis II each had only one. The two centrioles in the secondary oocyte separated into single units and formed the mitotic figure of meiosis II. The first polar body had two centrioles and the second had only one. The two centrioles in the first polar body did not form the mitotic figure nor did they separate at the time of meiosis II. These results indicate that, in sea urchins, duplication of the centrioles does not occur during the two successive meiotic divisions and the egg inherits only one centriole from the primary oocyte, confirming the results previously reported for starfish oocytes.  相似文献   

6.
The first set of 15 expressed sequence tag-simple sequence repeat markers was developed in sea urchin Hemicentrotus pulcherrimus. Number of alleles per locus ranged from two to 17. The observed and expected heterozygosities ranged from 0.022 to 0.911 and from 0.022 to 0.916, respectively. These informative marker loci will be useful for the assessment of genetic variation and population structure of this species.  相似文献   

7.
Secondary mesenchyme cells (SMCs) of the sea urchin embryo are composed of pigment cells, blastocoelar cells, spicule tip cells, coelomic pouch cells and muscle cells. To learn how and when these five types of SMCs are specified in the veg2 descendants, Notch or Nodal signaling was blocked with γ‐secretase inhibitor or Nodal receptor inhibitor, respectively. All types of SMCs were decreased with DAPT, while sensitivity to this inhibitor varied among them. Pulse‐treatment revealed that five types of SMCs are divided into “early” (pigment cells and blastocoelar cells) and “late” (spicule tip cells, coelomic pouch cells and muscle cells) groups; the “early” group was sensitive to DAPT up to the hatching, and the “late” group was sensitive until the mesenchyme blastula stage. Judging from timing of the shift of Delta‐expressing regions, it was suggested that the “early” group and “late” groups are derived from the lower and the middle tier of veg2 descendants, respectively. Interestingly, numbers of SMCs were also altered with SB431542; blastocoelar cells, coelomic pouch cells and circum‐esophageal muscles decreased, whereas pigment cells and spicule tip cells increased in number. Pulse‐treatment showed that the “early” group was sensitive up to the mesenchyme blastula stage, while the “late” group up to the onset of gastrulation. Thus, it became clear that precursor cells of the “early” and “late” groups, which are located in different regions in the vegetal plate, receive Delta and Nodal signals at different timings, resulting in the diversification of SMCs. Based on the obtained results, the specification processes of five types of SMCs are diagrammatically presented.  相似文献   

8.
Sea urchins are excellent models to elucidate metamorphic phenomena of echinoderms. However, little attention has been paid to the way that their organ resorption is accomplished by programmed cell death (PCD) and related cellular processes. We have used cytohistochemistry and transmission electron microscopy to study arm resorption in competent larvae of metamorphosing sea urchins, Hemicentrotus pulcherrimus, induced to metamorphose by L-glutamine treatment. The results show that: (1) columnar epithelial cells, which are constituents of the ciliary band, undergo PCD in an overlapping fashion with apoptosis and autophagic cell death; (2) squamous epithelial cells, which are distributed between the two arrays of the ciliary band, display a type of PCD distinct from that of columnar epithelial cells, i.e., a cytoplasmic type of non-lysosomal vacuolated cell death; (3) epithelial integrity is preserved even when PCD occurs in constituent cells of the epithelium; (4) secondary mesenchyme cells, probably blastocoelar cells, contribute to the elimination of dying epithelial cells; (5) nerve cells have a delayed initiation of PCD. Taken together, our data indicate that arm resorption in sea urchins proceeds concomitantly with various types of PCD followed by heterophagic elimination, but that epithelial organization is preserved during metamorphosis.This investigation was supported in part by a Keio University special grant-in-aid for innovative collaborative research projects.  相似文献   

9.
The process of pigment cell specification in the sand dollar Scaphechinus mirabilis was examined by manipulative methods. In half embryos, which were formed by dissociating embryos at the 2-cell stage, the number of pigment cells was significantly greater than half the number of pigment cells observed in control embryos. This relative increase might have been brought about by the change in the arrangement of blastomeres surrounding the micromere progeny. To examine whether such an increase could be induced at a later stage, embryos were bisected with a glass needle. When embryos were bisected before 7 h postfertilization, the sum of pigment cells observed in a pair of embryo fragments was greater than that in control embryos. This relative increase was not seen when embryos were bisected after 7 h postfertilization. From the size of blastomeres, it became clear that the 9th cleavage was completed by 7 h postfertilization. Aphidicolin treatment revealed that 10-15 pigment founder cells were formed. The results obtained suggest that the pigment founder cells were specified through direct cell contact with micromere progeny after the 9th cleavage, and that most of the founder cells had divided three times before they differentiated into pigment cells.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号