首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Fish bone, a by‐product of fishery processing, is composed of protein, calcium, and other minerals. The objective of this study was to investigate the effects of a bioactive peptide isolated from the bone of the marine fish, Johnius belengerii, on the osteoblastic differentiation of MC3T3‐E1 pre‐osteoblasts. Post consecutive purification by liquid chromatography, a potent osteogenic peptide, composed of 3 amino acids, Lys‐Ser‐Ala (KSA, MW: 304.17 Da), was identified. The purified peptide promoted cell proliferation, alkaline phosphatase activity, mineral deposition, and expression levels of phenotypic markers of osteoblastic differentiation in MC3T3‐E1 pre‐osteoblast. The purified peptide induced phosphorylation of mitogen‐activated protein kinases, including p38 mitogen‐activated protein kinase, extracellular regulated kinase, and c‐Jun N‐terminal kinase as well as Smads. As attested by molecular modelling study, the purified peptide interacted with the core interface residues in bone morphogenetic protein receptors with high affinity. Thus, the purified peptide could serve as a potential pharmacological substance for controlling bone metabolism.  相似文献   

4.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

5.
6.
Ewing's sarcomas are highly aggressive round cell tumors of bone and soft tissues that afflict children and young adults. The majority of these tumors harbor the t(11;22) translocation and express the fusion protein EWS‐FLI. Modern molecular profiling experiments indicate that Ewing's tumors originate from mesenchymal precursors in young individuals. EWS‐FLI alters the morphology of mesenchymal cells and prevents lineage specification; however, the molecular mechanisms for differentiation arrest are unclear. We recently showed that EWS‐FLI binds Runx2, a master regulator of osteoblast differentiation. In this report, we demonstrate that FLI sequences within EWS‐FLI are responsible for interactions with Runx2. EWS‐FLI blocks the expression of osteoblastic genes in a multipotent progenitor cell line that requires Runx2 to integrate bone morphogenic protein (Bmp)2 signaling while increasing proliferation and altering cell morphology. These results demonstrate that EWS‐FLI blocks the ability of Runx2 to induce osteoblast specification of a mesenchymal progenitor cell. Disrupting interactions between Runx2 and EWS‐FLI1 may promote differentiation of the tumor cell. J. Cell. Biochem. 111: 933–943, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
10.
11.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.  相似文献   

13.
mTORC1 signaling not only plays important physiological roles in the regulation of proliferation and osteogenic differentiation of BMSCs, but also mediates exogenous Wnt‐induced protein anabolism and osteoblast differentiation. However, the downstream effectors of the mTORC1 signaling in the above processes are still poorly understood. In this study, we explored the specific role of S6K1, one of the major targets of the mTORC1 pathway, in BMSCs self ‐ renewal and osteogenic differentiation. We first found that S6K1 was active in primary mouse bone marrow stromal cells, and further activated upon osteogenic induction. We then determined the effects of S6K1 inhibition by LY2584702 Tosylate, a selective inhibitor of S6K1 (hereafter S6KI), using both primary mouse bone marrow stromal cells and ST2 cells. Colony‐Forming Unit‐Fibroblast (CFU‐F) assays showed that S6KI dramatically reduced the total number of colonies formed in primary BMSCs cultures. Under the basal osteogenic culture condition, S6KI significantly inhibited mRNA expression of osteoblast marker genes (Sp7, Bglap, Ibsp, and Col1a1), ALP activity and matrix mineralization. Upon Wnt3a treatments, S6KI inhibited Wnt3a‐induced osteoblast differentiation and expression of protein anabolism genes in ST2 cells, but to a much lesser degree than rapamycin (a specific inhibitor of mTORC1 signaling). Collectively, our findings have demonstrated that pharmacological inhibition of S6K1 impaired self ‐ renewal and osteogenic differentiation of BMSCs, but only partially suppressed exogenous Wnt3a‐induced osteoblast differentiation and protein anabolism.  相似文献   

14.
15.
16.
17.
18.
Impaired osteoblast proliferation plays fundamental roles in microgravity‐induced bone loss, and cell cycle imbalance may result in abnormal osteoblast proliferation. However, whether microgravity exerts an influence on the cell cycle in osteoblasts or what mechanisms may underlie such an effect remains to be fully elucidated. Herein, we confirmed that simulated microgravity inhibits osteoblast proliferation. Then, we investigated the effect of mechanical unloading on the osteoblast cell cycle and found that simulated microgravity arrested the osteoblast cell cycle in the G2 phase. In addition, our data showed that cell cycle arrest in osteoblasts from simulated microgravity was mainly because of decreased cyclin B1 expression. Furthermore, miR‐181c‐5p directly inhibited cyclin B1 protein translation by binding to a target site in the 3′UTR. Lastly, we demonstrated that inhibition of miR‐181c‐5p partially counteracted cell cycle arrest and decreased the osteoblast proliferation induced by simulated microgravity. In conclusion, our study demonstrates that simulated microgravity inhibits cell proliferation and induces cell cycle arrest in the G2 phase in primary mouse osteoblasts partially through the miR‐181c‐5p/cyclin B1 pathway. This work may provide a novel mechanism of microgravity‐induced detrimental effects on osteoblasts and offer a new avenue to further investigate bone loss induced by mechanical unloading.  相似文献   

19.
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.  相似文献   

20.
DNA lesions trigger the DNA damage response (DDR) machinery, which protects genomic integrity and sustains cellular survival. Increasing data underline the significance of the integrity of the DDR pathway in chemotherapy response. According to a recent work, persistent exposure of A549 lung carcinoma cells to doxorubicin induces an initial DDR‐dependent checkpoint response, followed by a later DDR‐independent, but p27Kip1‐dependent one. Prompted by the above report and to better understand the involvement of the DDR signaling after chemotherapeutic stress, we examined the potential role of the canonical DDR pathway in A549 cells treated with doxorubicin. Exposure of A549 cells, prior to doxorubicin treatment, to ATM, ATR and DNA‐PKcs inhibitors either alone or in various combinations, revealed that the earlier documented two‐step response was DDR‐dependent in both steps. Notably, inhibition of both ATM and ATR or selective inhibition of ATM or DNA‐PKcs resulted in cell‐cycle re‐entry despite the increased levels of p27Kip1 at all time points analyzed. We further investigated the regulation of p27Kip1 protein levels in the particular setting. Our results showed that the protein status of p27Kip1 is mainly determined by p38‐MAPK, whereas the role of SKP2 is less significant in the doxoroubicin‐treated A549 cells. Cumulatively, we provide evidence that the DNA damage signaling is responsible for the prolonged cell cycle arrest observed after persistent chemotherapy‐induced genotoxic stress. In conclusion, precise identification of the molecular mechanisms that are activated during the chemotherapeutic cycles could potentially increase the sensitization to the therapy applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号