首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Traditional transformation methods are complex and time consuming. It is generally difficult to transform indica rice varieties using traditional transformation methods due to their poor regeneration. In this contribution, a simple method was developed for the transformation of indica rice. In this method, the mature embryos of soaked seeds were pierced by a needle, and then soaked in the Agrobacterium inoculum under vacuum infiltration. The inoculated seeds germinated and grew to maturation (T 0) under nonsterile conditions. The herbicide or antibiotic analysis and molecular analysis were conducted on T 0 plants. The results showed that although the efficiency of transformation was about 6.0%, it was easier to transform indica rice using the proposed method, and the transformation process was significantly shortened. The success of transformation was further confirmed by the genetic and molecular analyses of T 1 transformants.  相似文献   

2.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and l-cysteine (600 mg l−1) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22°C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l−1 hygromycin for 10 days, 5 mg l−1 hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l−1 hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.  相似文献   

3.
An improved bacterial preculture protocol for Agrobacterium-mediated genetic transformation was developed for an economic tomato cultivar (Solanum lycopersicum L. cv. Zhongshu No. 4). Frequencies of transient gene expression and stable transformation were influenced by the density of Agrobacterium preculture and not the density of Agrobacterium used for infection. The improved protocol presented in this study depends on the use of an overnight-grown Agrobacterium preculture density of OD600 nm = 1.0, diluted 1/10th with Luria-Bertani (LB) liquid medium, and grown for an additional 4 h. Cultures are collected and resuspended in a liquid cocultivation medium-I, adjusted to OD600 nm = 0.1. Using this modified Agrobacterium preparation, transient β-glucuronidase expression was higher than 90%, and transformation efficiency reached 44.7%. This improved transformation is simple, repeatable, does not require a feeder layer, and most notably, the transformation frequency is stable and highly efficient.  相似文献   

4.
5.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for ramie [Boehmeria nivea (L.) Gaud.] based on the examinations of several factors affecting plant transformation efficiency. The effects of Agrobacterium cell density, acetosyringone, co-cultivation temperature, co-cultivation duration, co-cultivation photoperiod and pH on stable transformation were evaluated. Agrobacterium at a concentration of OD = 0.5–0.8 improved the efficiency of transformation. Concentration of acetosyringone at 50 mg/L during co-cultivation significantly increased transformation efficiency. Co-cultivation at 20°C, in comparison to 15, 25 and 28°C, consistently resulted in higher transformation frequencies. A relatively short co-cultivation duration (3 days) was optimal for ramie transformation. Co-cultivation medium at pH 5.9 and co-cultivation in darkness both improved the transformation efficiencies of ramie. An overall scheme for producing transgenic ramie is presented, through which an average transformation rate from 10.5 to 24.7% in five ramie varieties was obtained. Stable expression and integration of the transgenes were confirmed by histochemical GUS assay, kanamycin painting assay, PCR and Southern blotting. This optimized transformation system should be employed for efficient Agrobacterium-mediated transformation of ramie. An erratum to this article can be found at  相似文献   

6.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

7.
Winter jujube, a species that originated in China, is the most prominent elite variety of jujube (Zizyphus jujuba Mill.). Due to its economic value and its recalcitrance to improvements through traditional plant breeding approaches, genetic transformation techniques may have a great potential in providing the means to transfer one or more selected desirable traits into the plant genome. We reported here an improved protocol for the Agrobacterium-mediated transformation of shoot tips of winter jujube. We have identified a set of optimum transformation conditions that take into account Agrobacterium inoculum density, Agrobacterium incubation period, co-cultivation conditions, and vacuum (use of a vacuum pump to create a negative-pressure environment). The highest transformation frequency (5.2%) was obtained when the shoot-tip explants were infected for 10 min and co-cultured for 4 days with Agrobacterium at OD600 0.8 under a negative pressure of 0.5 × 105 Pa. PCR and southern blot analyses confirmed the presence of transgenic plants and the stable integration of the target gene into the genome of regenerated plants. A histochemical staining analysis for GUS activity in the transgenic shoot tips also validated the efficiency of the transformation system.  相似文献   

8.
Zhao TJ  Zhao SY  Chen HM  Zhao QZ  Hu ZM  Hou BK  Xia GM 《Plant cell reports》2006,25(11):1199-1204
To improve the transformation efficiency of wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens, we explored the possibility of employing the basal portion of wheat seedling (shoot apical meristem) as the explants. Three genotypes of wheat were transformed by A. tumefaciens carrying β-1, 3-glucanase gene. After vernalization, the seeds to be transformed were germinated. When these seedlings grew up to 2∼5 cm, their coleoptile and half of the cotyledon were cut out, and the basal portions were infected by A. tumefaciens. A total 27 T0 transgenic plants were obtained, and the average transformation efficiency was as high as 9.82%. Evident segregation occurred in some of the T1 plants, as was indicated by PCR and Southern blotting analysis. Investigation of the T2 plants revealed that some transformed plants had higher resistance to powdery mildew than the controls. Northern blotting revealed that β-1, 3-glucanase gene was normally expressed in the T2 plants, which showed an increased resistance to powdery mildew. The results above indicate that the exogenous gene has been successfully integrated into the genome of wheat, transmitted and expressed in the transgenic progeny. From all the results above, it can be concluded that Agrobacterium inoculum to the basal portion of wheat seedling is a highly efficient and dependable transformation method. It can be developed into a practicable method for transfer of target gene into wheat.Tong-Jin Zhao and Shuang-Yi Zhao contributed equally to this paper.  相似文献   

9.
An optimized protocol for Agrobacterium tumefaciens-mediated transformation of mature Quercus suber L. embryogenic masses is reported. In this work several variables were tested. Plant genotype, explant type and time elapsed between the last subculture and inoculation, i.e. the explant preculture period, were found to be very important. Interaction between inoculum density and cocultivation period influenced the transformation efficiency as well. A transformation efficiency (i.e. percentage of the inoculated explants that yielded independent transgenic embryogenic lines) of up to 43% was obtained, greatly improving the previously described method for plant transformation of adult-selected cork oak. It was also shown that this protocol could be applied to various genotypes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Lactobacillus delbrueckii subsp. lactis strains were developed having increased activity, by gradually acclimatizing the bacteria to acidic conditions over repeated batch culture. Cells from one batch culture were used as the inoculum for the subsequent batch culture and thereby an adapted strain of Lactobacillus was obtained showing improved lactic acid productivity, cell growth and total glucose utilization. Furthermore, the acclimatized cells used significantly less nitrogen for a given level of lactic acid production, which is significant from an industrial point of view. The developed procedure decreases fermentation time and nutrient use, leading to reduced operation costs, while providing a lactic acid yield superior to previously reported methods.  相似文献   

11.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

12.
An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars. It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for maximum transgenic production are required for each individual cultivar.  相似文献   

13.
Aifu Yang  Qiao Su  Lijia An 《Planta》2009,229(4):793-801
The presence of selectable marker genes and vector backbone sequences has affected the safe assessment of transgenic plants. In this study, the ovary-drip method for directly generating vector- and selectable marker-free transgenic plants was described, by which maize was transformed with a linear GFP cassette (Ubi-GFP-nos). The key features of this method center on the complete removal of the styles and the subsequent application of a DNA solution directly to the ovaries. The movement of the exogenous DNA was monitored using fluorescein isothiocyanate-labeled DNA, which showed that the time taken by the exogenous DNA to enter the ovaries was shortened compared to that of the pollen-tube pathway. This led to an improved transformation frequency of 3.38% compared to 0.86% for the pollen-tube pathway as determined by PCR analysis. The use of 0.05% surfactant Silwet L-77 + 5% sucrose as a transformation solution further increased the transformation frequency to 6.47%. Southern blot analysis showed that the transgenic plants had low transgene copy number and simple integration pattern. Green fluorescence was observed in roots and immature embryos of transgenic plants by fluorescence microscopy. Progeny analysis showed that GFP insertions were inherited in T1 generation. The ovary-drip method would become a favorable choice for directly generating vector- and marker-free transgenic maize expressing functional genes of agronomic interest.  相似文献   

14.
The effect of agitation and aeration on the growth and antibiotic production by Xenorhabdus nematophila YL001 grown in batch cultures were investigated. Efficiency of aeration and agitation was evaluated through the oxygen mass transfer coefficient (K L a). With increase in K L a, the biomass and antibiotic activity increased. Activity units of antibiotic and dry cell weight were increased to 232 U ml−1 and 19.58 g l−1, respectively, productivity in cell and antibiotic was up more than 30% when K L a increased from 115.9 h−1 to 185.7 h−1. During the exponential growth phase, DO concentration was zero, the oxygen supply was not sufficient. So, based on process analysis, a three-stage oxygen supply control strategy was used to improved the DO concentration above 30% by controlling the agitation speed and aeration rate. The dry cell weight and activity units of antibiotic were further increased to 24.22 g l−1 and 249 U ml−1, and were improved by 24.0% and 7.0%, compared with fermentation at a constant agitation speed and a constant aeration rate (300 rev min−1, 2.5 l min−1).  相似文献   

15.
Highly efficient genetic transformation protocols and the regeneration of transgenic plants of Sugraone and Crimson Seedless grapevines (Vitis vinifera L.) were achieved from embryogenic calli co-cultured with low Agrobacterium tumefaciens densities. The sensitivity of embryogenic cultures to kanamycin, as well as the effect of Agrobacterium strains, C58(pMP90) or EHA105, and the bacterial concentration (0.06 or 0.2 at Optical Density OD600) on transformation efficiency were studied. Embryogenic cultures showed different kanamycin sensitivities and the total suppression of embryo differentiation at 20 and 50 mg/l kanamycin for Crimson Seedless and Sugraone, respectively. sgfp gene expression was evaluated in callus co-cultured with each bacterial strain. Although GFP transient expression was higher with A. tumefaciens EHA105 in both cultivars at the beginning of the culture, there were no significant differences 28 days post-inoculation. However, the concentration of Agrobacterium did affected transformation efficiency: 0.06 OD600 being more effective for the transformation of Crimson Seedless and 0.2 OD600 for Sugraone. By following the optimised procedure, 21 and 26 independent transgenic plants were generated from Sugraone and Crimson Seedless respectively, three to five months post-infection. PCR analyses were carried out to verify the integration of the sgfp and nptII genes into grapevine genome and the stable integration of the sgfp gene was confirmed by Southern blot.  相似文献   

16.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

17.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

18.
A collection of bacterial strains obtained from a wide-range origin was screened for ability to promote growth in two types of Prunus rootstocks in a commercial nursery. Only few strains promoted growth significantly and consistently, and a strong specificity for the rootstock cultivar was observed. Irrigation of plants with Pseudomonas fluorescens EPS282 and Pantoea agglomerans EPS427 significantly increased plant height and root weight of the plum Marianna 2624 and the peach–almond hybrid GF-677, respectively. Plant height showed a higher rate of growth in early stages of development (2.6–3.5 times the non-treated controls), but the effect decreased with plant age. However, in aged plants growth promotion was more significant on root weight (1.9 times the non-treated controls) than on plant height. The efficacy of growth promotion and the persistence of strains in the root environment were dependent on the bacterial inoculum concentration applied. Increases in root development were maximum at inoculum concentrations of up to 8 log10 CFU ml–1 (ca 10 log10 CFU L–1 of potting mix). Population levels at the optimum inoculum concentration were around 7 log10 CFU g f.w.–1 root material at early stages of development and decreased to 4 log10 CFU g f.w.–1 after several months of development. The best plant growth-promoting strains were very diverse in secondary metabolite production and antagonistic ability against several plant pathogens.  相似文献   

19.
A simple and reproducible Agrobacterium-mediated transformation protocol for a recalcitrant legume plant, lentil (Lens culinaris M.) is reported. Application of wounding treatments and efficiencies of three Agrobacterium tumefaciens strains, EHA105, C58C1, and KYRT1 were compared for T-DNA delivery into lentil cotyledonary node tissues. KYRT1 was found to be on average 2.8-fold more efficient than both EHA105 and C58C1 for producing transient β-glucuronidase (GUS) gene (gus) expression on cotyledonary petioles. Wounding of the explants, use of an optimized transformation protocol with the application of acetosyringone and vacuum infiltration treatments in addition to the application of a gradually intensifying selection regime played significant roles in enhancing transformation frequency. Lentil explants were transformed by inoculation with Agrobacterium tumefaciens strain, KYRT1 harboring a binary vector pTJK136 that carried neomycin phosphotransferase gene (npt-II) and an intron containing gusA gene on its T-DNA region. GUS-positive shoots were micrografted on lentil rootstocks. Transgenic lentil plants were produced with an overall transformation frequency of 2.3%. The presence of the transgene in the lentil genome was confirmed by GUS assay, PCR, RT-PCR and Southern hybridization. The transgenic shoots grafted on rootstocks were successfully transferred to soil and grown to maturity in the greenhouse. GUS activity was detected in vegetative and reproductive organs of T0, T1, T2 and T3 plants. PCR assays of T1, T2 and T3 progenies confirmed the stable transmission of the transgene to the next generations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号