首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8–388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1‐year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal‐dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small‐sized seeds (<0.3 cm) and less large‐seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small‐sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large‐seeded tree species may facilitate the maintenance of species diversity.  相似文献   

2.
Numerous studies have documented declines in plant diversity in response to habitat loss in fragmented landscapes. However, determining the mechanisms that lead to species loss is challenging using solely a correlative approach. Here we link correlative assessments of plant community composition with seed additions for a focal species to test the hypothesis that distributions of forests plants within a fragmented landscape are limited by seed dispersal. Woody plant species richness of fragments declined as fragments (n=26) became more isolated by agricultural fields. We predicted that if these isolation effects were driven by poor dispersal rather than other effects associated with habitat loss, then plants should vary in their response to isolation in relation to their seed size (i.e., stronger effects for plants with larger seeds). As predicted under this dispersal limitation hypothesis, sensitivity of bird-dispersed shrubs to isolation was related to their seed mass, with species with heavy seeds (e.g., Lindera benzoin) exhibiting stronger declines in presence across isolation gradients than species with light seeds. Seed addition experiments were performed for Lindera benzoin in two high isolation forest fragments (nearest neighbor mean distance=803 m) where Lindera was naturally absent, and two low isolation fragments (nearest neighbor mean distance=218 m) with naturally occurring Lindera populations. Seed addition and control plots (n=50 1 m2 plots per fragment) were monitored for 13 censuses over 3 years. Across all four fragments, seed additions resulted in significant increases in Lindera seedling recruitment with no differences in final seedling establishment among fragments. However, insect herbivory was higher on Lindera seedlings in high isolation compared to low isolation fragments and was negatively correlated with seedling survival over some years. Consistent with prior work, our results confirm that seed dispersal plays a significant role in affecting plant diversity in fragmented landscapes. However, results also suggest the need for a better understanding of how additional processes, such as herbivory, may be altered as habitat is lost and what effects such changes have for forest plants.  相似文献   

3.
The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e.g., reproductive mode and habitat preference).  相似文献   

4.
Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil’s scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.  相似文献   

5.
Aim To analyse the effects of forest fragmentation on ant communities in an Amazonian landscape that has been fragmented for over a century. Location The region surrounding the village of Alter do Chão in the Brazilian Amazonian state of Pará (2°30′ S, 54°57′ W). Methods Collection of ants and measurements of tree density were performed along transects established in eight sites in continuous forest and in 24 forest fragments surrounded by savanna vegetation. Data on size, perimeter, and degree of isolation (distance to continuous forest and distance to nearest area of forest > 5 ha) of each fragment were obtained from a georeferenced Landsat image of the study area. Results There were significant differences in species richness and composition between fragments and continuous forest, and these differences were not related to intersite variation in vegetation structure (tree density). Fragments supported fewer ant species per plot, and these species tended to represent a nested subset of those found in continuous forests. Fragments had significantly fewer rare species and fewer ant genera. However, fragments and continuous forest had similar numbers of species that also occur in the savanna matrix (i.e. that are not forest specialists). Multiple linear regression analyses indicated that species richness and composition in the fragments are significantly affected by fragment area, but not by fragment shape and degree of isolation. More species were found in larger fragments. Main conclusions Forest fragmentation influences the organization of ant communities in Amazonian savanna/forest landscapes. Forest fragments harboured, on average, 85% of the species found in continuous forest. That these fragments, despite their long history of isolation, support a relatively large complement of the species found in continuous forest is surprising, especially given that in some recently fragmented landscapes the proportion of species surviving in the fragments is lower. Differences in inter‐fragment distance and type of matrix between Alter do Chão and these other landscapes may be involved. The fact that fragments at Alter do Chão are surrounded by a natural (rather than an anthropogenic) habitat, and that most of them are less than 300 m from another forest area, may have helped to ameliorate the adverse effects of forest fragmentation.  相似文献   

6.
Seed predation is an important ecological process that affects the abundance, diversity and distribution of plant species, and it is known to be influenced by defaunation and forest fragmentation. Most studies on seed predation in human‐modified landscapes do not take into account the different spatial scales in which this process operates. In this study, we evaluated how variables at three distinct spatial scales affected the seed predation of a palm that provides a keystone resource to the frugivore community, the queen palm Syagrus romanzoffiana. Thirteen landscapes that vary in forest cover, number of fragments and patch sizes were sampled in the Brazilian Atlantic forest. We also evaluated the contribution of the three main groups of seed predators: squirrels, terrestrial rodents and invertebrates. Our results indicate that seed predation is more affected by fragment and local variables than by landscape influences. In addition, the size of the fragment, its shape and the distance from the nearest forest edge were the main predictors of the proportion of predated seeds. Moreover, the two main seed predators (squirrels and invertebrates) responded to the same fragment and local variables. Because most of the Atlantic forest consists of small fragments, we expect that the seed predation of this keystone palm should be high in most of its distribution, with potential consequences for the frugivore community.  相似文献   

7.
Habitat fragmentation has a marked impact on the functional composition of tropical forest tree assemblages, and such change is likely to cascade through other trophic levels. Here, we investigate how habitat fragmentation affects extrafloral nectary (EFN)‐bearing plants and ant functional groups known to attend EFNs in a fragmented landscape of the Atlantic Forest. Extrafloral nectary‐bearing trees were identified in 50 0.1‐ha plots located in forest fragments, edge and interior patches. Ants were surveyed in 30 1‐m2 litter samples in each of 17 forest fragments and in forest interior. Extrafloral nectary‐bearing plants accounted for 19.9% of individuals and 10.5% of species and included both pioneer and shade‐tolerant species similarly rich in the three habitat types. However, shade‐tolerant individuals accounted for >80% of EFN‐bearing plants in forest interior, compared with 2% in forest edge and 29% in fragments. Forest edge and fragment plots had a third fewer EFN‐bearing individuals and species compared with forest interior. This appeared to have important implications for local ant communities as the density of EFN‐bearing trees was the most important variable explaining the species richness of arboreal dominant ants. Our results show that plant loser–winner replacements promoted by forest fragmentation can cascade through higher trophic levels, with implications for forest dynamics and biodiversity conservation.  相似文献   

8.
Habitat loss and fragmentation can have severe negative and irreversible effects on biodiversity. We investigated the effects of forest fragmentation on frog diversity in Singapore because of its high rates of deforestation and the demonstration that frogs are some of the most sensitive species to habitat degradation. We surveyed frog species in 12 forest fragments varying from 11 to 935 ha. We compared differences in species richness, abundance, and Shannon's index in relation to forest fragment size, connectivity (distance between fragments), and breeding habitat heterogeneity. A total of 20 species from 12 genera and five families were encountered in 12 fragments. Larger fragments and those closer to larger fragments had higher species richness. Abundance, however, was not correlated with forest area or connectivity, but we found fewer individual frogs in the larger fragments. We also found that breeding habitat heterogeneity best explained frog species diversity and abundance in forest fragments. Fragments with a high diversity of breeding habitats had more species. We found no evidence to suggest that abundance and diversity are strongly correlated, particularly in disturbed areas, but that breeding habitat heterogeneity is an under-appreciated factor that should be considered when prioritizing areas for anuran conservation. Enriching breeding habitat heterogeneity, creating corridors between fragments, and reforesting degraded areas are some of the most beneficial strategies for preserving urban frog biodiversity.  相似文献   

9.
The effects of fragmentation and edge effects on the floristic composition, richness, diversity and abundance of epixylic bryophytes (growing on decaying wood) were investigated in ten fragments of Atlantic Forest remnants in the Northeast of Brazil. In each fragment, four perpendicular 100 m transects were demarcated. Along these transects, samples of bryophytes growing on decaying wood were collected. The forest fragments were grouped in three size classes (small: <100 ha; medium: 100–500 ha; large: >500 ha). Correlation and multivariate analysis were undertaken between bryophyte flora and fragment metrics (size, form, isolation, altitude variation, nuclear area and secondary vegetation percentage and distance from the edge). A total of 99 species of bryophytes, 52 liverworts and 47 mosses were registered. The statistical results confirming fragment size is an important factor in epixylic community structure. Therefore, composition, richness, diversity and abundance can be better explained by a junction of all studied landscape factors. Bryophyte richness, the percentage of samples with the greatest coverage of decaying wood and shade-tolerant species’ distribution, were not correlated to distance from the forest edge. This suggests that edge effects are not linear or can be detected beyond 100 m from the edge, which is very important for inclusion in future studies.  相似文献   

10.
The aim of this study is to analyze the effects of habitat loss and forest replacement by cattle pasture on the alpha and beta diversity, abundance, biomass and species composition of dung beetles with different dispersal ability. Dung beetles were captured in 19 forest fragments and neighbouring pastures. Forest fragment area ranged from 3.7 to 4825 ha and in this study were grouped into four categories: small, medium, large and control forest. A total of 35,048 dung beetles representing 101 species were collected. Forest fragments had the highest richness with 81 species, followed by pasture with 58 species. Replacement of forest by pasture reduced species richness; however, due to the proximity and connectivity of these areas with Cerrado patches, pastures also had high species richness, but species composition was independent of adjacent fragments. Small fragments had lower abundance and species richness than our other habitat categories, even pastures. Our results highlight that proximity and connectivity with Cerrado areas influenced the patterns of alpha and beta diversity of dung beetles in fragments and pastures. We highlight that the ability to cross the pasture matrix is a strong adaptive trait for species living in human-modified landscapes. Consequently, species with these abilities are less susceptible to the effects of forest fragmentation and local extinction. Our results reinforce the importance of considering the biogeographic location and distribution pattern of species in forest fragmentation studies.  相似文献   

11.
Rampant deforestation has caused the loss and fragmentation of natural habitats, which has precipitated a global biodiversity crisis. Research on how land-use change contributes to a loss of biodiversity is urgently needed, especially in ecosystems that have undergone rapid anthropogenic changes. We sought to investigate the extent to which habitat loss, fragmentation, and habitat split (the separation of forest and aquatic habitats) negatively influenced taxonomic diversity, functional diversity, total abundance, and the individual abundances of five anuran species in the Brazilian Cerrado. We sampled anurans between December 2017 and March 2018 using pitfall traps at sites distributed along a gradient of habitat fragmentation/habitat split: unfragmented forest, forest fragments without habitat split, and forest fragments with habitat split. Forest cover was measured within a 1-km radius of each site. Sites within unfragmented forests had higher taxonomic and functional diversities than either fragment type. Taxonomic diversity was highly correlated with functional diversity, but we did not find a pattern to the loss of functional traits. Total anuran abundance and the abundances of Chiasmocleis albopunctata, Physalaemus cuvieri, and Rhinella diptycha were higher in unfragmented forests compared to forest fragments. No species was more abundant in fragments than in unfragmented forests. Our results indicate that the fragmentation of forests by agricultural land use is directly and indirectly responsible for the loss of taxonomic and functional diversity, as well as for reducing population sizes of ground-dwelling anurans. Although we did not find a distinct effect of habitat split on ground-dwelling anurans, our study underscores the importance of preserving continuous forest habitats for the maintenance of anuran diversity in the Cerrado.  相似文献   

12.
Most habitat fragmentation studies have focused on the effects of population size on reproductive success of single species, but studies assessing the effects of both fragment size and connectivity, and their interaction, on several coexisting species are rare. In this study, we selected 20 fragments along two continuous gradients of size and degree of isolation in a gypsum landscape in central Spain. In each fragment, we selected 15 individuals of each of three dominant gypsophiles (Centaurea hyssopifolia, Lepidium subulatum and Helianthemum squamatum, 300 plants per species, 900 plants in total) and measured several reproductive traits: inflorescence number, fruit set, seed set and seed mass. We hypothesised that plant fitness would be lower on small and isolated fragments due to an interaction between fragment size and connectivity, and that response patterns would be species‐specific. Overall, fragment size had very little effect on reproductive traits compared to that of connectivity. We observed a positive effect of fragment connectivity on C. hyssopifolia fitness, mediated by the increased seed predation in plants from isolated fragments, resulting in fewer viable seeds per capitulum and lower seed set. Furthermore, seed mass was lower in plants from isolated fragments for both C. hyssopifolia and L. subulatum. In contrast, few reproductive traits of H. squamatum were affected by habitat fragmentation. We discuss the implications of species‐specific responses to habitat fragmentation for the dynamics and conservation of gypsum plant communities. Our results highlight the complex interplay among plants and their mutualistic and antagonistic visitors, and reinforce the often‐neglected role of habitat connectivity as a key component of the fragmentation process.  相似文献   

13.
土壤种子库是森林群落更新的主要来源之一,对森林的演替和恢复等具有重要意义。生境片段化现象正日益严重地影响着森林群落,并可影响森林土壤种子库。研究了千岛湖地区的大陆及岛屿次生马尾松林内土壤种子库的组成及其影响因素(e.g.,岛屿面积,形状指数,隔离度和距岛屿边缘距离等)。根据大陆和岛屿的面积及边缘梯度,采用大数量小样方法,分别在土壤种子库最大化(初冬,2015年12月)和最小化(晚春,2016年4月)时期对马尾松林内土壤进行了机械取样。对土壤样品进行萌发实验,检测了两个时期的土壤种子库上层(0—2 cm)和下层(2—5 cm)种子组成,并通过广义线性混合效应模型等手段分析其影响因素。结果显示:(1)所有316个土壤样本中,萌发出幼苗1422株,隶属于29科、40属、41种。其中,木本植物幼苗占13种1024株,草本占28种398株。(2)Jaccard指数和相关性分析均显示初冬、晚春时期的土壤种子库组成具有很高的相似性;土壤种子库上、下层组成的相似性也很高。(3)广义线性混合效应模型分析显示,在大陆和岛屿上,土壤种子库下层种子含量低于上层;而大陆样地土壤种子库中的木本植物种子数较岛屿样地高。岛屿上,土壤种子库中的种子数随土层的加深而降低;随边缘梯度升高也下降,尤其是草本植物的种子。对于岛屿上的木本植物,不耐阴种的种子数量远大于耐阴种,尤其是土壤下层。表明千岛湖地区马尾松林内土壤种子库组成受到生境片段化的影响,进而可能作用于该类型森林群落的演替。  相似文献   

14.
Loss and fragmentation of natural habitats are key contributors to the decline of populations and impoverishment of biological communities. The response to these disturbances can vary substantially among taxa and depends on spatial metrics of habitat fragments and the surrounding landscape. Herein we test how fragment area, shape, isolation, and matrix quality affect reptile richness, abundance, and occurrence in Brazilian Atlantic Forest fragments, a biodiversity hotspot with a poorly studied reptile fauna. We used 23 forest fragments, ranging from 2 to 30 hectares, surrounded by different matrix types, including sugarcane crop fields, cattle ranching, subsistence farmlands and rural communities. Species richness, total reptile abundance, population abundance, and occurrence probability of many species decreased with fragment area. Model selection suggested that fragment area is the main predictor of both richness and abundance, but matrix quality as well as fragment shape are also important predictors. For population abundance and occurrence probability, fragment area and proximity were the most important predictors followed by fragment shape and matrix quality, but the strength and even the sign of predictors varied substantially among species. We highlight that the value of small fragments should not be neglected for the conservation of Atlantic Forest reptiles.  相似文献   

15.
S. MANU  W. PEACH  & W. CRESSWELL 《Ibis》2007,149(2):287-297
Almost nothing is known of the effects of forest fragmentation on bird diversity within the heavily degraded and fragmented forest remnants in West Africa. We examined the effects of edge, fragment size and isolation on bird species richness in southwestern Nigeria where forest fragmentation is pronounced. In total, 122 km of line transects were used to survey birds and vegetation within 45 forest patches between January 2000 and March 2002: 197 species were recorded. Avian species number and total counts in forest patches were unrelated to fragment area (within the observed range of 14–445 ha), but were negatively influenced by degree of isolation and increasing distance from the edge. As the total area of forested land within 15 km of a patch fell from 4 to 0%, so 21% of species were lost. In total, six and zero species (of 154 recorded more than once) were consistently recorded in the larger and smaller forest fragments, respectively, and four and two bird species were consistently recorded in unisolated and isolated forest fragments, respectively, suggesting that the addition of ‘edge’ species did not compensate for loss of species sensitive to fragmentation. Diversity index was not affected by either fragment area or degree of isolation, but decreased with distance from the edge. When individual species counts were considered, 68% of species (n = 62) showed no significant effect of distance to edge. Of those 20 species which showed an effect, 12 were less common close to the edge. Most species (65%) did not respond significantly to increasing isolation but of those 22 species that did, 20 were less common in more isolated fragments. Ninety‐seven per cent of species showed no significant response to area. As avian diversity and species composition, but not species number, were apparently insensitive to forest fragmentation, our findings suggest that fragmentation reduces the probability of occurrence of a wide range of West African bird species, rather than a subset of fragmentation‐sensitive species. The greater apparent sensitivity of present‐day West African forest bird communities to fragmentation rather than patch size might reflect previous extinctions of area‐sensitive species. Minimizing further forest fragmentation might be the most effective means of conserving avian diversity in current West African landscapes where most remaining forest patches are small (i.e. < 500 ha).  相似文献   

16.
Male euglossine bees were sampled with chemical baits every two months from September 1997 to July 1999 at nine sites in the Desengano mountain range, Rio de Janeiro State, Brazil. Four sites were located in Atlantic Forest mature second growth, two sites in disturbed forest, and three sites in forest fragments of 200, 156, and 14 ha, respectively. We collected 3653 male euglossine bees from at least 21 species. Analyses of variance indicated no differences among the three habitat types for total number of bees, and 5 of the 6 dominant species. Bootstrapping indicated significant variation in species richness and diversity for some sites, but there was no clear indication of differences among habitats. Similarity as measured with the Morisita–Horn index was inversely related to distance between sites, but relatively high for most site combinations. These results suggest that the euglossine bee community in the three habitats was essentially the same. Although some species were associated with each habitat type, most appeared to respond to temporal local conditions. Our results do not support the hypothesis that forest fragmentation or habitat alteration reduces abundance and diversity of euglossine bees.  相似文献   

17.
The effects of fragmentation on tropical bee communities are not well understood. The present study investigated these effects on wild bee species richness and diversity in fragments of tropical forest in the Yucatan Estate (Mexico). We present an analysis of bee community structure based on fragment size, connectivity, and bee life form, and include an analysis of m-dominance to evaluate if large fragments sustain greater species diversity compared to small fragments. Results indicated that the bee community within each fragment was composed of different bee species, and that species richness and diversity increased with fragment size, although this relationship varied between the life forms. Results suggest a high degree of isolation between fragments and greater differences in species composition. The m-dominance analysis indicated that 37% of the species recorded were restricted to medium and large-size fragments, while all other species were randomly distributed across fragments of different size in general; ours results indicate that not only do large fragments support greater species diversity than small fragments, but they are also essential for the conservation of wild bee species.  相似文献   

18.
Rapid deforestation has fragmented habitat across the landscape of Madagascar. To determine the effect of fragmentation on seed banks and the potential for forest regeneration, we sampled seed viability, density and diversity in 40 plots of 1 m2 in three habitat types: forest fragments, the near edge of continuous forest, and deforested savanna in a highly fragmented dry deciduous forest landscape in northwestern Madagascar. While seed species diversity was not different between forest fragments and continuous forest edge, the number of animal‐dispersed seeds was significantly higher in forest fragments than in continuous forest edge, and this pattern was driven by a single, small‐seeded species. In the savanna, seeds were absent from all but three of the 40 plots, indicating that regeneration potential is low in these areas. Several pre‐ and post‐dispersal biotic and abiotic factors, including variation in the seed predator communities and edge effects could explain these findings. Understanding the extent to which seed dispersal and seed banks influence the regeneration potential of fragmented landscapes is critical as these fragments are the potential sources of forest expansion and re‐connectivity.  相似文献   

19.
We use Hubbell's neutral theory to predict the impact of habitat fragmentation on Amazonian tree communities. For forest fragments isolated for about two decades, we generate neutral predictions for local species extinction, changes in species composition within fragments, and increases in the probability that any two trees within a fragment are conspecific. We tested these predictions using fragment and intact forest data from the Biological Dynamics of Forest Fragments Project in central Amazonia. To simulate complete demographic isolation, we excluded immigrants--species absent from a fragment or intact forest plot in the initial census but present in its last census--from our tests. The neutral theory correctly predicted the rate of species extinction from different plots as a function of the diversity and mortality rate of trees in each plot. However, the rate of change in species composition was much faster than predicted in fragments, indicating that different tree species respond differently to environmental changes. This violates the key assumption of neutral theory. When immigrants were included in our calculations, they increased the disparity between predicted and observed changes in fragments. Overall, neutral theory accurately predicted the pace of local extinctions in fragments but consistently underestimated changes in species composition.  相似文献   

20.
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号