首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.

Background

The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.

Methodology/Principal Findings

Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat-specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta-diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity.

Conclusions/Significance

Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation.  相似文献   

2.
In the Atlantic Forest in Brazil, where no more primary forests exist, the value of secondary forests for biodiversity conservation is becoming more and more important. We studied the spiders in a relatively well-preserved region of the Mata Atlântica, where the matrix of the landscape is still forest. We addressed the contribution of different spatial levels including forest stages to total diversity and analyzed the patterns by additive partitioning of beta diversity on genus and morphospecies level and for different sampling methods. Beta diversity was strongly based on turnover, not on gain/loss. All spatial levels (sample, stage, area, locality) contributed more to beta diversity than expected, without stronger influence of stage. Patterns were consistent for both identification levels and all methods. We conclude that in this landscape the protection of large areas encompassing all forest stages, without special attention to old-growth, is the best way to conserve the regional species richness.  相似文献   

3.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

4.
The spatial scaling of beta diversity   总被引:1,自引:0,他引:1  
Beta diversity is an important concept used to describe turnover in species composition across a wide range of spatial and temporal scales, and it underpins much of conservation theory and practice. Although substantial progress has been made in the mathematical and terminological treatment of different measures of beta diversity, there has been little conceptual synthesis of potential scale dependence of beta diversity with increasing spatial grain and geographic extent of sampling. Here, we evaluate different conceptual approaches to the spatial scaling of beta diversity, interpreted from ‘fixed’ and ‘varying’ perspectives of spatial grain and extent. We argue that a ‘sliding window’ perspective, in which spatial grain and extent covary, is an informative way to conceptualize community differentiation across scales. This concept more realistically reflects the varying empirical approaches that researchers adopt in field sampling and the varying scales of landscape perception by different organisms. Scale dependence in beta diversity has broad implications for emerging fields in ecology and biogeography, such as the integration of fine‐resolution ecogenomic data with large‐scale macroecological studies, as well as for guiding appropriate management responses to threats to biodiversity operating at different spatial scales.  相似文献   

5.
Aim While ecologists have long been interested in diversity in mountain regions, elevational patterns in beta diversity are still rarely studied across different life forms ranging from micro‐ to macroorganisms. Also, it is not known whether the patterns in turnover among organism groups are affected by the degree to which the environment is modified by human activities. Location Laojun Mountain, Yunnan Province, China. Methods The beta diversity patterns of benthic microorganisms (i.e. diatoms and bacteria) and macroorganisms (i.e. macroinvertebrates) in a stony stream were simultaneously investigated between elevations of 1820 and 4050 m. Data were analysed by using a distance‐based approach and variation partitioning based on canonical redundancy analysis. Results Analyses of community dissimilarities between adjacent sampling sites showed comparable small‐scale beta diversity along the elevational gradient for the organism groups. However, bacteria clearly showed the lowest elevational turnover when analyses were conducted simultaneously for all pairwise sites. Variation partitioning indicated that species turnover was mostly related to environmental heterogeneity and spatial gradients including horizontal distance and elevation, while purely human impacts were shown to be less important. Main conclusions The elevational beta diversity at large scales was lower for bacteria than for eukaryotic microorganisms or macroorganisms, perhaps indicative of high dispersal ability and good adaptability of bacteria to harsh environmental conditions. However, the small‐scale beta diversity did not differ among the groups. Elevation was the major driver for the turnover of eukaryotic organisms, while the turnover of bacteria was correlated more with environmental variation.  相似文献   

6.
Aim To analyse how the dung beetles (Scarabaeinae) respond to a modified, variegated landscape, taking into account the biogeographical peculiarities of the Mexican Transition Zone. Location This study covers cloud forest (CF) of the Sierra Norte de Puebla mountain range and part of the Sierra Madre Oriental mountain range (Mexico). Methods We applied proportional sampling based on the landscape variegation model with Scarabaeinae as the indicator group, and using two approaches: structural units (vegetation type) and spatial units (windows). We used two measures – richness and Shannon diversity – and applied multiplicative diversity partitioning to obtain independent alpha and beta diversities for the landscape, windows and vegetation types. We grouped species by biogeographical distribution pattern for the biogeographical analysis and by whether they were originally from CF. Results The transformation of CF into secondary forest, pastures and other types of vegetation increases the Scarabaeinae diversity of the landscape, in vegetation types and windows. This increase is the result of species arriving from the tropical lowlands. However, the original dung beetle community of the CF dominates at different scales in the number of species, abundance and biomass. With increasing habitat modification, beta diversity increases in the windows, and species with the Tropical Palaeoamerican distribution pattern increase in abundance in vegetation types and windows. Main conclusions The variegated character of the landscape explains well the distribution and diversity of this dung beetle community. The peculiar characteristics of the Mexican Transition Zone have an effect owing to the overlap of fauna with different biogeographical origins. The conversion of fragmented landscapes to variegated landscapes could be a conservation goal in human‐modified mountain landscapes. Sampling proportional to the area of different types of vegetation and the use of windows offer an alternative experimental design in variegated landscapes.  相似文献   

7.
Aim The scale of observation is important in detecting the spatial variation of biological assemblages, which should be taken into consideration for an appropriate plan of biogeographical conservation. We investigated whether (1) World Wildlife Fund’s ecoregion units are the appropriate scale for conserving ant diversity in Iran, (2) each ecoregion represents a distinct ant community composition and (3) patterns of diversity partitioning differ among four ecoregions. Location Iran, a sampling transect along four arid and semi‐arid ecoregions. Methods We applied hierarchical partitioning to data collected from a nested sampling design including four hierarchical levels: ‘local’, ‘landscape’, ‘ecoregional’ and ‘whole‐region’. Observed alpha and beta diversity components were compared with values of null distributions. Hierarchical cluster analysis was applied to evaluate similarity of ant species composition among ecoregions. Results Partitioning of whole‐region species richness showed that 85% of the species richness was generated by beta diversity among ecoregions and landscapes. The highest value of diversity was generated by beta diversity among ecoregions. Unlike whole‐region partitioning, separate partitioning within each ecoregion revealed that beta component among localities contributed to species richness of each ecoregion. Ecoregions showed different patterns of diversity partitioning. The alpha component contributed largely to the total diversity of two ecoregions, but for two other ecoregions, beta component contributed more than alpha component. Cluster analysis identified four discrete ant species compositions; however, it split landscapes of one ecoregion into two distinct groups. Main conclusions Whole‐region diversity partitioning indicates that ecoregions represent the appropriate scale for conserving ant diversity and that each ecoregion has a distinct ant fauna. However, different conservation strategies should be considered for different ecoregions owing to the differing scales of variation within them. Boundaries of ecoregions remain a subject for further studies. The influence of climate change on ecoregional boundaries should be considered and should be predicted with respect to future conservation maps.  相似文献   

8.
《Journal of Asia》2014,17(3):629-632
It is unknown whether long-term climatic variability or short-term microhabitat environmental fluctuation would be the key mechanism in determining the microarthropod compositional variation. In the present brief report, by utilizing microarthropod communities as the study model, I aimed to test the relative importance of macro-climatic versus micro-environmental variability on structuring the beta diversity patterns of microarthropod communities. The random sampling effect in quantifying beta diversity has been controlled using a null model. Variation partitioning technique is employed to test the relative importance of both mechanisms. The results showed that microarthropod beta diversity pattern is exclusively influenced by micro-environmental condition, especially for oribatids and collembolans. The influence of macro-climatic variability on structuring microarthropod community structure is exactly zero as indicated by variation partitioning analyses. Correspondingly, the interaction between micro-environment and macro-climate plays no roles on structuring microarthropod beta diversity too. Conclusively, microhabitat condition, but not regional climate, is the driver of microarthropod diversity patterns in SW Canada.  相似文献   

9.
A method for assessing the alpha and beta diversity components of a macroinvertebrate community across numerous spatial scales is presented. Findings were not empirically linked to ecological questions as the purpose of this study was primarily the demonstration of a diversity partitioning method. Sampling was carried out at three sites on the upper Modder River in the Free State Province, South Africa between April 2008 and January 2009. Communities were analysed by investigating the relative frequency of species in specific biotopes, a Similarity Profile (SIMPROF) and cluster analyses of the Bray‐Curtis similarities between samples, and the partitioning of species richness and Shannon diversity across multiple spatial scales. Findings revealed that sites showed significant clustering (SIMPROF P < 0.05; <20% Bray‐Curtis similarity), and the species frequencies indicated preference to selected microhabitats. Species richness and Shannon diversity of macroinvertebrates differed significantly (5% confidence levels) from randomly simulated values for sampling sites, biotopes and seasons indicating that diversity is clustered and not homogeneously distributed. The diversity partitioning could have potential in diversity assessment for conservation biology, land management and environmental impact assessments.  相似文献   

10.
 β-多样性刻画了地理区域中不同地点物种组成的变化,是理解生态系统功能、生物多样性保护和生态系统管理的一个重要概念。该文介绍了如何从群落组成,相关环境和空间数据角度去分析β-多样性。β-多样性可以通过计算每个地点的多样性指数,进而对可能解释点之间差异的因子所作的假设进行检验来研究。也可以将涵盖所有点的群落组成数据表看作是一系列环境和空间变量的函数,进行直接分析。这种分析应用统计方法将多样性指数或群落组成数据表的方差进行关于环境和空间变量的分解。该文对方差分解进行阐述。方差分解是利用环境和空间变量来解释β-多样性的一种方法。β-多样性是生态学家用来比较不同地点或同一地点不同生态群落的一种手段。方差分解就是将群落组成数据表的总方差无偏分解成由各个解释变量所决定的子方差。调整的决定系数提供了针对多元回归和典范冗余分析的无偏估计。 方差分解后,可以对感兴趣的方差解释部分进行显著性检验,同时绘出基于这部分方差解释的预测图。  相似文献   

11.
Here, we employ an additive partitioning framework to disentangle the contribution of spatial turnover and nestedness to beta diversity patterns in the global freshwater fish fauna. We find that spatial turnover and nestedness differ geographically in their contribution to freshwater fish beta diversity, a pattern that results from contrasting influences of Quaternary climate changes. Differences in fish faunas characterized by nestedness are greater in drainage basins that experienced larger amplitudes of Quaternary climate oscillations. Conversely, higher levels of spatial turnover are found in historically unglaciated drainage basins with high topographic relief, these having experienced greater Quaternary climate stability. Such an historical climate signature is not clearly detected when considering the overall level of beta diversity. Quantifying the relative roles of historical and ecological factors in explaining present-day patterns of beta diversity hence requires considering the different processes generating these patterns and not solely the overall level of beta diversity.  相似文献   

12.
Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups.  相似文献   

13.
Aims: Beta diversity is the variation in species composition amongsites in a geographic region. Beta diversity is a key conceptfor understanding the functioning of ecosystems, for the conservationof biodiversity and for ecosystem management. The present reportdescribes how to analyse beta diversity from community compositionand associated environmental and spatial data tables. Methods: Beta diversity can be studied by computing diversity indicesfor each site and testing hypotheses about the factors thatmay explain the variation among sites. Alternatively, one cancarry out a direct analysis of the community composition datatable over the study sites, as a function of sets of environmentaland spatial variables. These analyses are carried out by thestatistical method of partitioning the variation of the diversityindices or the community composition data table with respectto environmental and spatial variables. Variation partitioningis briefly described herein. Important findings: Variation partitioning is a method of choice for the interpretationof beta diversity using tables of environmental and spatialvariables. Beta diversity is an interesting ‘currency’for ecologists to compare either different sampling areas ordifferent ecological communities co-occurring in an area. Partitioningmust be based upon unbiased estimates of the variation of thecommunity composition data table that is explained by the varioustables of explanatory variables. The adjusted coefficient ofdetermination provides such an unbiased estimate in both multipleregression and canonical redundancy analysis. After partitioning,one can test the significance of the fractions of interest andplot maps of the fitted values corresponding to these fractions.  相似文献   

14.
Environmental DNA (eDNA) metabarcoding is an increasingly popular tool for measuring and cataloguing biodiversity. Because the environments and substrates in which DNA is preserved differ considerably, eDNA research often requires bespoke approaches to generating eDNA data. Here, we explore how two experimental choices in eDNA study design—the number of PCR replicates and the depth of sequencing of PCR replicates—influence the composition and consistency of taxa recovered from eDNA extracts. We perform 24 PCR replicates from each of six soil samples using two of the most common metabarcodes for Fungi and Viridiplantae (ITS1 and ITS2), and sequence each replicate to an average depth of ~84,000 reads. We find that PCR replicates are broadly consistent in composition and relative abundance of dominant taxa, but that low abundance taxa are often unique to one or a few PCR replicates. Taxa observed in one out of 24 PCR replicates make up 21–29% of the total taxa detected. We also observe that sequencing depth or rarefaction influences alpha diversity and beta diversity estimates. Read sampling depth influences local contribution to beta diversity, placement in ordinations, and beta dispersion in ordinations. Our results suggest that, because common taxa drive some alpha diversity estimates, few PCR replicates and low read sampling depths may be sufficient for many biological applications of eDNA metabarcoding. However, because rare taxa are recovered stochastically, eDNA metabarcoding may never fully recover the true amplifiable alpha diversity in an eDNA extract. Rare taxa drive PCR replicate outliers of alpha and beta diversity and lead to dispersion differences at different read sampling depths. We conclude that researchers should consider the complexity and unevenness of a community when choosing analytical approaches, read sampling depths, and filtering thresholds to arrive at stable estimates.  相似文献   

15.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

16.
北京东灵山辽东栎林植物物种多样性的多尺度分析   总被引:7,自引:1,他引:6  
张育新  马克明  祁建  冯云  张洁瑜 《生态学报》2009,29(5):2179-2185
多尺度分析物种多样性格局能够为有效保护生物多样性提供重要信息.利用物种多样性的加法分配法则分析了样方-坡位-坡面等级尺度系统辽东栎林植物物种多样性(gamma多样性)的alpha多样性和beta多样性在各尺度上的分配关系.结果表明以物种丰富度为指标的区域物种多样性的最大贡献来自坡面尺度,表明坡面尺度是维持辽东栎林物种多样性的有效尺度;而对Simpson多样性和Shannon多样性的最大贡献则来自样方内,这决定于群落物种优势度和稀有度格局;各尺度间beta多样性组分随尺度的增大而增大可能是环境异质性和扩散作用的综合结果.各尺度间Shannon多样性对总体多样性的贡献大于Simpson多样性的贡献是偶见种在各尺度间分配的结果.物种多样性分配的加法法则为物种多样性格局的多尺度分析提供了理论框架,是检验物种多样性格局形成机制的有效方法.  相似文献   

17.
This study aims to establish a relationship between the sampling scale and tree species beta diversity temperate forests and to identify the underlying causes of beta diversity at different sampling scales. The data were obtained from three large observational study areas in the Changbai mountain region in northeastern China. All trees with a dbh ≥1 cm were stem‐mapped and measured. The beta diversity was calculated for four different grain sizes, and the associated variances were partitioned into components explained by environmental and spatial variables to determine the contributions of environmental filtering and dispersal limitation to beta diversity. The results showed that both beta diversity and the causes of beta diversity were dependent on the sampling scale. Beta diversity decreased with increasing scales. The best‐explained beta diversity variation was up to about 60% which was discovered in the secondary conifer and broad‐leaved mixed forest (CBF) study area at the 40 × 40 m scale. The variation partitioning result indicated that environmental filtering showed greater effects at bigger grain sizes, while dispersal limitation was found to be more important at smaller grain sizes. What is more, the result showed an increasing explanatory ability of environmental effects with increasing sampling grains but no clearly trend of spatial effects. The study emphasized that the underlying causes of beta diversity variation may be quite different within the same region depending on varying sampling scales. Therefore, scale effects should be taken into account in future studies on beta diversity, which is critical in identifying different relative importance of spatial and environmental drivers on species composition variation.  相似文献   

18.
The relationships among alpha and beta diversity indices, computed from 141 randomly sampled quadrats, and the vegetation classes obtained by multi-spectral satellite image classification, were used as a strategy for mapping plant diversity in a tropical landscape mosaic. A relatively high accuracy of the land cover map was revealed by the overall accuracy assessment and the Cohen's Kappa statistic. Species accumulation models were used to evaluate how representative the sample size was the different vegetation types. A standard one-way, between-subjects ANOVA confirmed a significant reduction of the within-class variance of plant diversity with respect to their total variance across the landscape. Computed uniformity indices, to assess the internal uniformity of vegetation classes on the diversity indices, confirmed the goodness of the mapped classes in stratifying variability of plant diversity. This allowed for the use of the mapped classes as spatial interpolators of plant diversity values for estimation and up-scaling purposes. Finally, it was revealed that the plant diversity of the landscape depends, to a large extent, on the diversity contained in the most mature forest class, which is also the most diverse community in the studied area. High and moderate beta diversity values between mature forests and both the secondary associations and the first stages of succession, respectively, indicated that there is a significant contribution to the diversity of the landscape by those vegetation classes.  相似文献   

19.
Site‐to‐site variation in community composition, or beta diversity, is a major component of regional diversity. While many mechanisms, such as dispersal limitation and habitat heterogeneity, have been shown to affect beta diversity, interactions between habitat heterogeneity and environmental fluctuation have not been thoroughly investigated. This study uses leaf‐colonizing (epiphyllous) bryophyte communities as a model system to investigate the effects of microclimate fluctuation on beta diversity. I hypothesized that beta diversity would increase with increasing microclimate fluctuation, as niche breadth of species was reduced with increasing fluctuation. A total of 354 leaf‐colonizing bryophyte communities from 18 sites on the island of Moorea, French Polynesia were collected and identified. At each site, temperature and relative humidity were measured and converted to vapor pressure deficit (VPD). My analyses showed that beta diversity among communities on different host types tended to increase with the increasing daily range of VPD at a given site. It is possible that high fluctuation in microclimate conditions augments the differences in habitat quality among host types, resulting in greater dissimilarities among epiphyllous communities. However, host niche breadths of major epiphyllous species did not decrease with increasing VPD range. Overall, the results suggest that beta diversity may increase with environmental fluctuation, but it is not likely to be the results of reduced niche breadth as theoretically suspected.  相似文献   

20.
Variation partitioning is one of the most frequently used method to infer the importance of environmental (niche based) and spatial (dispersal) processes in metacommunity structuring. However, the reliability of the method in predicting the role of the major structuring forces is less known. We studied the effect of field sampling design on the result of variation partitioning of fish assemblages in a stream network. Along with four different sample sizes, a simple random sampling from a total of 115 stream segments (sampling objects) was applied in 400 iterations, and community variation of each random sample was partitioned into four fractions: pure environmentally (landscape variables) explained, pure spatially (MEM eigenvectors) explained, jointly explained by environment and space, and unexplained variance. Results were highly sensitive to sample size. Even at a given sample size, estimated variance fractions had remarkable random fluctuation, which can lead to inconsistent results on the relative importance of environmental and spatial variables on the structuring of metacommunities. Interestingly, all the four variance fractions correlated better with the number of the selected spatial variables than with any design properties. Sampling interval proved to be a fundamentally influential sampling design property because it affected the number of the selected spatial variables. Our findings suggest that the effect of sampling design on variation partitioning is related to the ability of the eigenvectors to model complex spatial patterns. Hence, properties of the sampling design should be more intensively considered in metacommunity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号