首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotic indices based on soft-bottom macrozoobenthic communities are currently used throughout Europe to assess the ecological quality of coastal and transitional water bodies according to the European Water Framework Directive. However, the performance of the currently available biotic indices still has to be tested against a variety of different impact sources. In particular, physical perturbations have received much less attention than other kind of disturbances. This study consisted in testing the capacity of currently available uni- (BOPA, AMBI and BENTIX) and multivariate (M-AMBI) Biotic Indices to assess the ecological impact of the destruction of a Zostera noltii seagrass bed in Arcachon Bay (France) following sediment deposits. Changes of habitat after this physical perturbation were hardly assessed by any of these Biotic Indices whereas analysis of the benthic community showed drastic changes of structure following the perturbation and no recovery after 15 months. This study demonstrates that these Biotic Indices must be integrated into a multimetric approach which describes better the biological integrity of the benthic community by including a complementary set of metrics. A new multimetric approach, named MISS (Macrobenthic Index of Sheltered Systems) is proposed. MISS correctly highlighted the destruction of the seagrass beds, by using 16 metrics describing the biological integrity of the macrofauna.  相似文献   

2.
《Ecological Indicators》2008,8(4):395-403
Legislation in US and Europe has been adopted to determine the ecological integrity of estuarine and coastal waters, including, as one of the most relevant elements, the benthic macroinvertebrate communities. It has been recommended that greater emphasis should be placed on evaluating the suitability of existing indices prior to developing new ones. This study compares two widely used measures of ecological integrity, the Benthic Index of Biotic Integrity (B-IBI) developed in USA and the European AZTI's Marine Biotic Index (AMBI) and its multivariate extension, the M-AMBI. Specific objectives were to identify the frequency, magnitude, and nature of differences in assessment of Chesapeake Bay sites as ‘degraded’ or ‘undegraded’ by the indices. A dataset of 275 subtidal samples taken in 2003 from Chesapeake Bay were used in this comparison. Linear regression of B-IBI and AMBI, accounted for 24% of the variability; however, when evaluated by salinity regimes, the explained variability increased in polyhaline (38%), high mesohaline (38%), and low mesohaline (35%) habitats, remained similar in the tidal freshwater (25%), and decreased in oligohaline areas (17%). Using the M-AMBI, the explained variability increased to 43% for linear regression, and 54% for logarithmic regression. By salinity regime, the highest explained variability was found in high mesohaline and low polyhaline areas (53–63%), while the lowest explained variability was in the oligohaline and tidal freshwater areas (6–17%). The total disagreement between methods, in terms of degraded-undegraded classifications, was 28%, with high spatial levels of agreement. Our study suggests that different methodologies in assessing benthic quality can provide similar results even though these methods have been developed within different geographical areas.  相似文献   

3.
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed.  相似文献   

4.
Aim The New Zealand terrestrial mollusc fauna is among the most speciose in the world, with often remarkably high richness at lowland forest sites. We sought to elucidate general explanations for patterns of richness in terrestrial mollusc communities by analysis of species coexistence and habitat relationships within a New Zealand district fauna. Location Pukeamaru Ecological District, eastern North Island, New Zealand. Methods We sampled molluscs using qualitative methods at twenty-three sites and quantitatively by frame sampling of scrubland-forest floor litter at sixteen of these sites and analysed patterns of species richness and turnover in relation to regional species pools and local habitat attributes. We then tested for nonrandom assemblage of taxa along diversity and habitat gradients. Results Ninety-four indigenous mollusc species were recorded from a district fauna estimated at 102 indigenous species: only two species were endemic. From the presumptive geological history of the district, the low endemism, and Brooks parsimony and indicator species analyses of faunal relationships, the communities were indicated to have resulted by accumulation of colonists from other New Zealand districts since the Miocene. Richness ranged from two or three indigenous species in dune habitats to fifty-nine species in a floristically rich forest. Beta diversity was high and site occupancy per species was low, indicating communities structured by successive replacement of ecological equivalents. Sites differing in vegetation had characteristic species assemblages, indicating a degree of habitat specialization. Canonical correspondence analysis indicated that canopy tree species, canopy height, floristic diversity, altitude, litter mass, and litter pH were important determinants of species assemblage in scrubland and forest. Richness was strongly associated with site floristic diversity and, for litter-dwelling species, the pH of litter substrate. High richness occurred at those sites supporting molluscs in high abundance. Shell-shape distributions were essentially Cainian unimodal, with communities dominated by snail species with subglobose to discoidal shells. Mean and variance of shell size increased with mollusc species richness and floristic diversity at sites, indicating dominance of communities by small-shelled species at early successional or floristically poor sites, and increased richness resulting from addition of larger snails into vacant niches. Shifts in shell form were associated with sympatry in several congeneric taxa. Main conclusions The underdispersion of shell shape, relative to faunas elsewhere in the world, indicates that community structure in New Zealand land snail faunas has been constrained by limited phylogenetic diversity and/or by convergence upon successful adaptations. The remarkably high richness that characterizes these communities indicates special conditions allow coexistence of numerous species. The relationship between floristic diversity at sites and the richness, diversity, and shell-size distributions of the molluscs suggests assemblages structured around niche partitioning among competing species. While there is an element of congruence between vegetation and mollusc pattern, this study indicates that assembly rules will be defined, and spatial pattern predicted, only through a better understanding of the linkage between regional species pool, organism traits, environment, and local community assemblage.  相似文献   

5.
The loss of biotic integrity in ecosystems due to human pressure has been receiving much attention from the scientific community. The primary aim of this study is to understand how the increasing human pressure on natural forests in the Azorean archipelago (North Atlantic) is affecting their epigean arthropod communities and which biological parameters it affects most. An expert team did fieldwork covering most of the natural forests (mainly inside nature reserves) of the archipelago using standardized pitfall trapping. To build a multimetric index we tested a number of taxonomic and ecological parameters that can potentially be influenced by disturbance. Sixteen of these were found to be significantly influenced by disturbance in forests. We retained seven metrics due to both, desirable scalability properties and relatively low correlation between them. These included the percentages of endemic and predator species richness and also predator abundance, which are inversely related to disturbance; and the percentages of native and saprophagous species richness and introduced and herbivore abundance, which are positively related to disturbance. All seven metrics were combined in an Index of Biotic Integrity (IBI) value. We then proceeded to understand which potential disturbance factors are influencing the biotic integrity of communities and how such influence is felt. Five disturbance factors were found to influence the IBI, although in different ways: the size and fragmentation of reserves, the distance of sites to the reserve borders, the invasion by alien plants and the density of human paths at the sites. Given that only percentages of taxonomical or ecological characteristics were chosen as metrics, we tested and found the scalability of the IBI to be possible, allowing the comparison of sites with different collecting effort or even the comparison of reserves with different areas and numbers of collecting sites in each. Finally, we propose a novel graphical representation for multimetric indices like the IBI, one which allows retaining much of the information that is usually lost in multimetric indices.  相似文献   

6.
Diatoms are widely used in stream bioassessment due to their broad distribution, extraordinary variability and the ability to integrate changes in water quality. The indices Specific Polluosensitivity Index (SPI), standardized Biological Diatom Index (BDI), European Economic Community Index (CEC) and Generic Diatom Index (GDI), originally developed in France, are often applied in Portugal to evaluate stream ecological quality based on diatom communities. Alternatively, predictive models resulting from the comparison between the communities of the study site and those of a set of reference sites representing undisturbed or the best available conditions of a given region have been proposed as valuable methods for evaluating the ecological status of streams. In the present study, we applied the four above-mentioned widely used diatom-based indices (SPI, BDI, CEC and GDI) and a predictive model (MoDi) to 54 sites located in central Portugal to assess the sensitivity of the five methods to a range of anthropogenic disturbances cumulatively affecting streams and represented by 27 variables (e.g., organic enrichment, changes in morphology of the channels, integrity of the riparian corridor, land use in the catchment). The results were analyzed comparatively through Spearman correlations, Boxplots and Stepwise Discriminant Analysis. This study confirmed the sensitivity of diatoms to organic and nutrient contamination (showed by the MoDi, BDI, CEC and SPI) and revealed the importance of suspended solids (through the MoDi, GDI, and SPI). The relevance of modifications in land use to diatoms was shown by all methods applied, except for the GDI. The MoDI also revealed the importance of changes in the structure and morphology of the reach and the channel, like the construction of artificial walls or embankments and connectivity; the BDI also related its assessments with the riparian zone integrity; and the SPI was not useful in detecting morphological pressures. The GDI produced the most divergent assessments and was less effective in revealing the anthropogenic disturbances. The use of the predictive model (MoDi) is therefore a good method for the assessment of streams in central Portugal because it expresses a great diversity of quantitative and qualitative changes in freshwater systems reflected in the structure (species richness and abundance) of diatom communities.  相似文献   

7.
Roads and associated stream crossings can modify and degrade natural hydrology of a system and alter organism movement. Culvert replacement and stream crossing improvements are extremely common and often done with the intent to improve biotic integrity of a system. We evaluated 3 sites where poor road‐stream crossings were improved by replacing improper culverts with full‐span natural bottom structures. We used a before‐after‐control‐impact paired series (BACIPS) design to determine if there was evidence of associated improvement in biotic integrity of the stream communities. Biotic integrity indices developed for coldwater fish and macroinvertebrates in the Northern Lakes and Forests Ecoregion were used to estimate responses of the biotic communities adjacent to culvert replacements. With poor to fair fish and macroinvertebrate communities prior to culvert replacement, we predicted communities would show improvement into the good range of the indices. With 2–4 years of pre‐data and 3–5 years of postdata, we were not able to detect improvements in overall biotic integrity utilizing fish or macroinvertebrate index scores. Road crossing improvements may synergistically restore stream ecosystems, restore natural sediment dynamics, and improve passage; however, in these cases local biotic integrity scores were not significantly improved. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity and biological communities or fisheries; however, as restoration practitioners, researchers, and managers, assessing these claims and learning from prior restoration attempts is necessary.  相似文献   

8.
《Global Change Biology》2018,24(5):1904-1918
Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat‐forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta‐diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance‐ and incidence‐based beta‐diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within‐region comparisons using abundance‐ and incidence‐based measures of beta‐diversity, and in across‐region comparisons using incidence‐based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta‐diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land‐ and seascapes, as well as managing anthropogenic impacts in high activity areas.  相似文献   

9.
Agricultural expansion is a major driver of biodiversity loss, especially in the megadiverse tropics. Rice is among the world’s most important food crops, invariably affecting biodiversity worldwide. Although the effects of habitat conversion to rice crops on biodiversity are not completely understood, landscape modification often creates conditions that benefit some species and excludes others. We conducted an integrative evaluation of the effects that habitat conversion to irrigated rice crops has on anuran communities from a Cerrado-Amazon ecotone. We adopted a multidimensional approach to compare anuran communities from agricultural and pristine environments considering (i) taxonomic metrics; (ii) functional and phylogenetic diversity; (iii) selected and excluded traits and (iv) body condition indices. When compared to their pristine counterparts, agricultural waterbodies showed increased functional divergence and decreased species diversity and functional richness. Furthermore, agricultural anuran communities exhibited lower phylogenetic diversity. Nonetheless, taxonomic diversity did not vary significantly, suggesting that it should not be used without complementary metrics. Species with small range, habitat specialization, small clutches and large body size were excluded from rice crops. Furthermore, frogs showed lower body condition in crops than in pristine areas. Understanding how species traits correlate with specific responses to agriculture will allow better predictions of the functional effects of anthropogenic land-use. Maintaining high diversity in anthropogenic environments is important for ecosystem resilience because diverse communities are more likely to hold multiple species capable of contributing to ecological functions. Our results show that converting natural vegetation to irrigated rice crops drives many species to local extinction, and resilient species to exhibit lower body condition.  相似文献   

10.
Wooded biomes converted to human-modified landscapes (HML) are common throughout the tropics, yielding small and isolated forest patches surrounded by an agricultural matrix. Diverse anthropogenic interventions in HMLs influence patches in complex ways, altering natural dynamics. Assessing current condition or ecological integrity in these patches is a challenging task for ecologists. Taking the Brazilian Atlantic Forest as a case study, we used the conceptual framework of the Index of Biotic Integrity (IBI), a multimetric approach, to assess the ecological integrity of eight small forest patches in a highly disturbed HML with different configurations and histories. The IBI was developed using bird assemblages found in these patches, and its performance was compared with analytical approaches commonly used in environmental assessment, such as general richness and Shannon’s diversity index. As a first step, the IBI procedure identifies an existing gradient of human disturbance in the study region and checks which biotic characteristics (candidate metrics) vary systematically across the gradient. A metric is considered valid when its’ relationship with the gradient provides an ecological interpretation of the environment. Then, the final IBI is elaborated using each valid metric, obtaining a score for each site. Over one year of sampling, 168 bird species were observed, providing 74 different bird candidate metrics to be tested against the disturbance gradient. Seven of them were considered valid:richness of threatened species; richness of species that use both “forest and non-forest” habitats; abundance of endemics, abundance of small understory-midstory insectivores, abundance of exclusively forest species; abundance of non-forest species, and abundance of species that forage exclusively in the midstory stratum. Each metric provided complementary information about the patch’s ecological integrity. The resulting IBI showed a significant linear relationship with the gradient of human disturbance, while total species richness and Shannońs diversity index did not. Application of numerical approaches, such as total species richness and Shannon’s diversity, did not distinguish ecological traits among species. The IBI proved better for assessing and interpreting ecological and environmental condition of small patches in highly disturbed HML. The IBI framework, its multimetric character, and the ease with which it can be adapted to diverse situations, make it an effective approach for assessing environmental conditions in the Atlantic Forest region, and also for many other small forest patches in the tropics.  相似文献   

11.
Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the ‘short basal annual forbs and perennial forbs’ group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of ‘woody plants’, an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the ‘short basal annual forbs and perennial forbs’ and the ‘grasses’ groups.  相似文献   

12.
Benthic macrophyte communities of different substratum types (soft, hard) were studied in eleven differently impacted sites belonging in two different water typologies (transitional waters: Lesina Lagoon, Varna Lake; coastal waters: Varna Bay) and two ecoregions (Mediterranean Sea, Black Sea). Species lists were compiled for each study site, 20 taxa were found at Lesina and Varna Lake and Bay, and the abundance of each taxon was determined at each site. The relationship between nine metrics related to community structure [species richness, % of total coverage, dry biomass (g/m?2), and cluster and multi-dimensional scaling plot of Bray–Curtis similarity] and function [Ecological Status Group I % coverage, ESG II % coverage, Ecological Evaluation Index (EEI-c) and Ecological Index (EIEEI)] and key abiotic factors and an anthropogenic stress index (EnII) were studied. A strong relationship (Spearman rank correlation coefficient ρ ≤ ?0.89; R 2 ≥ 0.89) between anthropogenic stress and functional indices, EEI-c and EIEEI, was found. The structural index ‘species richness’ correlated negatively with EnII and positively with salinity, demonstrating a freshwater and confinement influence on species diversity. EEI-c and EIEEI indices classified the studied sites and locations in different Ecological Status Classes in accordance with the anthropogenic stress gradient.  相似文献   

13.
Identifying ecological response variables sensitive to hydrological change is a key step in determining the impacts of river flow alterations on aquatic ecosystems and in setting environmental flows that sustain certain ecological values. Building on the successful use of flow regime sensitive aquatic invertebrate indices in other countries, particularly the UK based Lotic Index for Flow Evaluation (LIFE), we provide two variants of a similar index for use in New Zealand (LIFENZ and a weighted variant: LIFENZ_W). As in the original LIFE, the New Zealand indices were based on water velocity preference categories assigned to aquatic invertebrate taxa using professional judgement. To calculate the indices a lookup table is used to assign a score to each taxon based on their velocity category and abundance. For the LIFENZ_W variant an additional step down weighted the scores if the taxon has a general compared to a more specific velocity preference. The two index variants were correlated with each other and to similar environmental parameters. Across a total of 74 sites, both indices were correlated with depth-averaged water velocity. Changes in index values, both between sites and temporally within sites, were predominantly associated with changes in hydrological parameters, such as the magnitude and length of time since a recent high flow, and to a lesser degree with other physico-chemical parameters. Commonly used indices in New Zealand designed to respond to nutrient enrichment (MCI and variants) were not correlated with local water velocity, but were correlated with antecedent flow conditions and were likely influenced by effects of flow stability on algal growth. Further testing of LIFENZ and LIFENZ_W in combination with MCI is recommended, particularly in rivers subject to more extreme hydrological and water quality stresses and with regard to other physical parameters such as hydraulic habitat. However, the LIFENZ and its weighted variant (LIFENZ_W) appear to be useful tools for understanding and managing the effects of hydrological alteration on aquatic invertebrate communities in New Zealand. As LIFENZ and LIFENZ_W were strongly correlated and only showed a relatively small deviation from a slope of 1 we recommend the use of the more straightforward LIFENZ in almost all circumstances.  相似文献   

14.
In recent years, several benthic biotic indices have been proposed to be used as ecological indicators in estuarine and coastal waters. One such indicator, the AZTI Marine Biotic Index (AMBI), was designed to establish the ecological quality of European coasts. The index examined the response of soft-bottom benthic communities to natural and man-induced disturbances in coastal and estuarine environments. It has been successfully applied to different geographical areas and under different impact sources, with increasing user numbers in European marine waters (Baltic, North Sea, Atlantic and Mediterranean). The AMBI has been used also for the determination of the ecological quality status (EcoQ) within the context of the European Water Framework Directive (WFD).In this contribution, 38 different applications including six new case studies (hypoxia processes, sand extraction, oil platform impacts, engineering works, dredging and fish aquaculture) are presented. The results show the response of the benthic communities to different disturbance sources in a simple way. Those communities act as ecological indicators of the ‘health’ of the system, indicating clearly the gradient associated with the disturbance.  相似文献   

15.
The implementation of directives such as the European Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD) has promoted the development of several tools and methods for assessing the ecological health of marine ecosystems. Within the scope of the WFD and in terms of rocky shores, several multimetric tools were developed based on the macroalgae biological quality element (BQE), in addition to those based on macroinvertebrates.The WFD requires member states to assess each BQE separately. The present work aimed to test the ability of ecological indices to distinguish sites within anthropogenic disturbance gradients caused by organic enrichment, using macroinvertebrate communities on intertidal rocky shores. Owing to the lack of more specific indices (for rocky shore), indices based on abundance, diversity and/or taxonomic composition were selected from several widely used indices in ecological studies and/or developed for soft-bottom macroinvertebrate communities.Present findings reveal several indices based on diversity and/or taxonomic composition able to distinguish sites within the disturbance gradients, showing increasing quality from the site nearest the source of organic enrichment to that farthest from it, especially indices calculated using biomass data, and in the summer season. Such results open good perspectives for the use of intertidal macroinvertebrate communities from rocky shores, and also help add the perspective of this biological quality element in the ecological quality assessment of coastal waters.  相似文献   

16.
Many globally applied biotic indices, including the AMBI benthic index, are based on species’ sensitivity/tolerance to anthropogenic disturbances. The AMBI scoring primarily relies on the correct assignment of both taxon stressor-sensitivities and the disturbance thresholds or bands. Using an extensive, long-term monitoring dataset from New Zealand (NZ) estuaries, we describe how the AMBI has been strengthened through quantitative derivation of taxon-specific sensitivities and condition thresholds for two key estuarine stressors [mud and total organic carbon (TOC)], and the integration of taxon richness. The results support the use of the existing AMBI condition bands but improve the ability to identify cause; 2–30% mud reflected a ‘normal’ to ‘impoverished’ macrofaunal community; 30–95% mud and 1.2–3% TOC ‘unbalanced’ to ‘transitional’; and >3–4% TOC ‘transitional’ to ‘polluted’. The (refined) AMBI was also successfully validated (R2 values >0.5 for mud, and >0.4 for TOC) for use in shallow, intertidal dominated estuaries NZ-wide. Most biotic indices lack the ability to differentiate between anthropogenic disturbances, which in turn undermine their effectiveness for applied purposes. By integrating key quantitative information to an existing benthic index, these results enable more robust identification of coastal stressors and facilitate defensible management decisions.  相似文献   

17.
Reliable and inexpensive indicators of ecosystem function are essential for accurately monitoring and describing ecosystem integrity. Currently, most state and federal assessments of aquatic ecological integrity rely on structural indicators and assume tight coupling of structure and function. We used fluorescent composition of dissolved organic matter as a metric for certain ecosystem functions and compared the resulting index of autochthonous microbial dissolved organic matter (DOM) to macroinvertebrate indicators and classifications of water quality attainment reported by the Maine Department of Environmental Protection (Maine DEP) at 142 stream sites. We observed that metrics of sensitive insect orders such as relative Plecoptera generic richness, relative Ephemeroptera abundance, and generic richness of EPT (Ephemeroptera, Plecoptera, and Trichoptera) were negatively correlated with higher values of metrics based on autochthonous microbial DOM sources. At the same time we observed an increase in the Hilsenhoff Biotic Index with increasing microbial DOM. We compared the abundance of this microbial DOM component to Maine DEP measured attainment classes and found that microbial DOM generally separated sites with high biological integrity from sites where the biotic community was highly degraded. This highlights that measures of biogeochemical ecosystem function complement measures of structure in biological assessments.  相似文献   

18.
Under the Water Framework Directive (WFD) benthic Ecological Quality Ratios (EQRs) are important tools for assessing Ecological Status (ES) of coastal and transitional waters. Calculation of the Multivariate-AZTI Marine Biotic Index (M-AMBI) EQR is based on the proportions of sensitive and stress tolerant benthic invertebrate species, number of species and Shannon–Wiener diversity. The sensitivity of many tropical/sub-tropical taxa has not yet been determined, presenting a barrier to the direct transfer of WFD EQRs, and the ideas underpinning them, to the management of coastal waters beyond Europe. To overcome this we examine using higher taxonomic level data with M-AMBI.Before applying such approaches to assessing ES in new geographical regions it is essential to determine the effects of using higher taxonomic level data on M-AMBI in areas where the tool was developed. To this end, we use macrofaunal data from three well studied sites in north-western Europe to examine the effects of using taxonomic level data higher than species on M-AMBI. Using the European datasets M-AMBI ES classification was shown to be robust to changes in taxonomic level data. We test the suitability of family-level M-AMBI for assessing ES in subtropical Hong Kong waters. Family level M-AMBI was useful in detecting stress in Hong Kong, where it successfully detected temporal and spatial shifts in ES in response to seasonal hypoxia and salinity variability, and anthropogenic organic enrichment.  相似文献   

19.
The Strategic Plan for Biodiversity 2011–2020 sets as an objective the restoration of 15% of degraded ecosystems by 2020. This challenge raises at least two major questions: (i) How to restore and (ii) how to measure restoration success of said ecosystems? Measurement of restoration success is necessary to assess objective achievement and to adjust management with regard to objectives. Numerous studies are being conducted to try to work out synthetic indices to assess ecosystem diversity or integrity in the context of global change. Nevertheless, at the community level, there is no index that allows the assessment of community integrity regarding its restoration or resilience, despite the fact that a lot of indicators are used such as species richness, Shannon diversity, multivariate analyses or similarity indices. We have therefore developed two new indices giving new insights on community states: the first index, coined as the Community Structure Integrity Index, measures the proportion of the species abundance in the reference community represented in the restored or degraded community, and the second index, coined as the Higher Abundance Index, measures the proportion of the species abundance in the restored or degraded community which is higher than in the reference community. We illustrate and discuss the use of these new indices with three examples: (i) fictitious communities, (ii) a recent restoration (2 years) of a Mediterranean temporary wetland (Camargue in France) in order to assess restoration efficiency, and (iii) a recently disturbed pseudo-steppe plant community (La Crau area in France) in order to assess natural resilience of the plant community. The indices provide summarized information on the success of restoration or on the resilience of the plant community, which both appear less positive than with standard indicators already used. The indices also provide additional insights useful for management purposes: the Community Structure Integrity Index can indicate whether the improving target species abundance is needed or not while the Higher Abundance Index can indicate whether controlling the high abundance of some species is needed in order to approach a reference ecosystem. These relatively simple indices developed on community composition and structure state can provide a base to further indices focusing on ecosystem functioning or services not only calculating values as a static point but also its temporal or spatial dynamic.  相似文献   

20.
The impacts of differences in watershed land uses, and differences in seasonality on benthic macroinvertebrate communities, were evaluated in 12 stream sites within the Xitiaoxi River watershed, China, from April 2009 to January 2010. The composition of macroinvertebrate community differed significantly among three land use types. Forested sites were characterized by high taxa richness, diversity and the benthic‐index of biotic integrity (B‐IBI), while farmland and urban disturbed stream sites presented contrary patterns. The percentage of urban land use, conductivity, dissolved oxygen, ammonia nitrogen and total phosphorus were the major drivers for the variations. The land use related water quality stress gradients of the four sampling seasons were determined by means of four independent Principal Component Analyses. The responses of macroinvertebrate community metrics, to anthropogenic stressors, were explored using Spearman Rank Correlation analyses. All the selected metrics, including total numbers of taxa, numbers of Ephemeroptera, Plecoptera and Trichoptera taxa, percentage of non‐insect abundance, percentage of scrapers abundance, Pielou’s evenness index, Simpson diversity index, and the Benthic Index of Biotic Integrity were correlated significantly with environmental gradients (PC1) in autumn. In other seasons such correlations were less pronounced. Our results imply that autumn is the optimal time to sample macroinvertebrate communities, and to conduct water quality biomonitoring in this subtropical watershed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号