首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potentials of Haplophyllum tuberculatum and Plectranthus cylindraceus oils to control Meloidogyne javanica were investigated in vitro and in a greenhouse. A mixture of Haplophyllum and Plectranthus oils (1:1) was highly toxic to M. javanica in vitro, as it killed all nematode juveniles and inhibited hatching of eggs at 12.5 μg/ml concentration after 24 h exposure time, as did carbofuran at the same concentration. In the green-house, tomatoes grown in soil treated with a combination (1:1) of the two oils developed fewer root galls than those grown in soil treated with higher doses of either oil. The oil mixture, at 2.5 and 5.0 μg/ml of soil, was not phytotoxic to tomato plants as evident from the appearance and height of plants after 12 weeks exposure time, compared to treatment over the same period at lower effective doses. The nematicidal activity of the combined essential oils was suggested by the presence of C10 dienes, C10 trienes and C10 phenol.  相似文献   

2.
Solid CO₂ (dry ice) was added to pots containing soil that was infested either with eggs of the root-knot nematode, Meloidogyne incognita, or with tomato (Lycopersicon esculentum ''Rutgers'') root fragments that were infected with various stages of the nematode. Two hours after dry ice was added, thermocouples in the soil recorded temperatures ranging from -15 °C to -59 °C. One day after treatment with the dry ice, the temperature of the soil was allowed to equilibrate with that of the greenhouse, and susceptible tomato seedlings were planted in pots containing infested soil treated or untreated (controls) with dry ice. After 5 weeks, roots were removed from the pots and nematode eggs were extracted and counted. Plants grown in soil infested with eggs and receiving dry ice treatment had less than 1% of the eggs found in the controls; plants from soil infested with root fragments and receiving dry ice treatment had less than 4% of the eggs found in controls. Dry ice used to lower soil temperature may have potential as a cryonematicide.  相似文献   

3.
Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay.  相似文献   

4.
Laboratory, greenhouse, and field experiments were performed with the objective of selecting efficient indigenous strains of entomopathogenic nematodes (EPNs) from Rio Grande do Sul (RS) state, Brazil, for controlling the South American fruit fly, Anastrepha fraterculus (Wied.). Laboratory experiments were conducted in 24 well-plates filled with sterile sand and one insect per well. In greenhouse experiments, plastic trays filled with soil collected from the field were used, while in field experiments, holes were made in soil under the edge of peach tree canopies. Among 19 EPN strains tested, Heterorhabditis bacteriophora Poinar RS88 and Steinernema riobrave Cabanillas, Poinar, & Raulston RS59 resulted in higher A. fraterculus larval (pre-pupal) and pupal mortality, with LD90 of 1630, 457 and 2851, 423 infective juveniles (IJs)/cm2, respectively. Greenhouse experiments showed no differences in pupal mortality at 250 and 500 IJs/cm2 of either nematode. In the field, H. bacteriophora RS88 and S. riobravae RS59 sprayed individually over natural and artificially infested fruit (250 IJs/cm2) resulted in A. fraterculus larval mortality of 51.3%, 28.1% and 20%, 24.3%, respectively. There was no significant difference in A. fraterculus pupal mortality sprayed with an aqueous suspension of either nematode; however, when using infected insect cadavers, H. bacteriophora RS88 was more efficient than S. riobrave RS59. Our results showed that H. bacteriophora RS88 was more virulent to insect larvae, with an efficient host search inside the infested fruit and control of pupae in the soil after being applied by aqueous suspension or infected cadavers.  相似文献   

5.
The influence of resistant and susceptible potato cultivars on Globodera rostochiensis population density changes was studied at different nematode inoculum levels (Pi) in the greenhouse and field. Soil in which one susceptible and two resistant cultivars were grown and fallow soil in pots was infested with cysts to result in densities of 0.04-75 eggs/cm³ soil. A resistant cultivar was grown in an infested field with Pi of 0.7-16.7 eggs/cm³ soil. Pi was positively correlated with decline of soil population densities due to hatch where resistant potatoes were grown in the greenhouse and in the field but not in fallow soil. However, Pi was not correlated with in vitro hatch of G. rostochiensis cysts in water or potato root diffusate. Under continuous culture o f a resistant cultivar, viable eggs per cyst declined 60-90% per plant growth cycle (4 weeks) and the number of cysts containing viable eggs had decreased by 77% after five cycles. The rate of G. rostochiensis reproduction on both resistant and susceptible cultivars was negatively correlated with Pi. These data were used to predict the effect of resistant and susceptible potato cultivars on G. rostochiensis soil population dynamics.  相似文献   

6.
This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location.  相似文献   

7.
In previous greenhouse and laboratory studies, citrus seedlings infested with the citrus nematode Tylenchulus semipenetrans and later inoculated with the fungus Phylophthora nicotianae grew larger and contained less fungal protein in root tissues than plants infected by only the fungus, demonstrating antagonism of the nematode to the fungus. In this study, we determined whether eggs of the citrus nematode T. semipenetrans and root-knot nematode Meloidogyne arenaria affected mycelial growth of P. nicotianae and Fusarium solani in vitro. Approximately 35,000 live or heat-killed (60°C, 10 minutes) eggs of each nematode species were surface-sterilized with cupric sulfate, mercuric chloride, and streptomycin sulfate and placed in 5-pl drops onto the center of nutrient agar plates. Nutrient agar plugs from actively growing colonies of P. nicotianae or F. solani were placed on top of the eggs for 48 hours after which fungal colony growth was determined. Live citrus nematode eggs suppressed mycelial growth of P. nicotianae and F. solani (P ≤ 0.05) compared to heat-killed eggs and water controls. Reaction of the fungi to heat-killed eggs was variable. Root-knot nematode eggs had no effect on either P. nicotianae or F. solani mycelial growth. The experiment demonstrated a species-specific, direct effect of the eggs of the citrus nematode on P, nicotianae and F. solani.  相似文献   

8.
镰刀菌(Fusarium spp.)和根结线虫(Meloidogyne spp.)都是植物的重要病原物,这两种病原物在寄主植物中存在着非常复杂的互作关系,可导致严重的植物土传病害。为探寻对番茄根结线虫病害具有高效防治作用的优良菌株,本研究以禾谷镰刀菌(Fusarium graminearum)为靶标病菌,采用平板稀释涂布法从多年种植番茄的设施大棚土壤中分离和筛选到一株抑菌效果较好的生防细菌菌株TMQ-KSL-1,根据形态特征、生理生化特性和16S rRNA基因测序对该菌株进行鉴定;测定不同浓度的发酵液及发酵上清液对根结线虫卵孵化率以及根结线虫二龄幼虫死亡率的影响,通过盆栽实验分析其发酵液对根结线虫病害的防治效果。结果表明,菌株TMQ-KSL-1具有较强的杀线虫活性,其发酵液和发酵上清液处理48 h线虫卵孵化抑制率分别为94.76%和90.72%;处理24 h番茄根结线虫二龄幼虫的校正死亡率分别为100%和97.37%;菌株TMQ-KSL-1发酵液100倍稀释液、200倍稀释液对番茄根结线虫病害防治效果分别为59.54%和12.14%,且100倍液处理防效与阿维菌素500倍液处理防效(6...  相似文献   

9.
Bacillus firmus, commercial WP formulation (BioNem) was evaluated against the root-knot nematode Meloidogyne incognita in a laboratory, greenhouse and under field conditions on tomato plants. In the laboratory tests, an aqueous suspension of BioNem at 0.5%, 1%, 1.5% and 2% concentration reduced egg hatching from 98% to 100%, 24-days after treatment. Treatment of second-stage juveniles with 2.5% and 3% concentration of BioNem, caused 100% inhibition of mobility, 24 h after treatment. In the green house trials, BioNem applied at 8 g/pot (1200 cc soil) planted with a tomato seedlings reduced gall formation by 91%, final nematode populations by 76% and the number of eggs by 45%. Consequently, plant height and biomass was increased by 71% and 50%, respectively, compared to the untreated control, 50-days after treatment application. Application of BioNem at 16 g/pot was phytotoxic to plants. In the field trails, BioNem applied at 200 and 400 kg ha−1 was effective in reducing the number of galls (75-84%), and increased shoot height (29-31%) and weight (20-24%) over the untreated control, 45-days after treatment. Our results indicate that B. firmus is a promising microorganism for the biological control of M. incognita in tomato pots.  相似文献   

10.
Fungi were isolated from Meloidogyne spp. eggs and females on 102 field-collected root samples in China. Of the 235 fungi isolated (representing 18 genera and 26 species), the predominant fungi were Fusarium spp. (42.1% of the isolates collected), Fusarium oxysporum (13.2%), Paecilomyces lilacinus (12.8%), and Pochonia chlamydosporia (8.5%). The isolates were screened for their ability to parasitise Meloidogyne incognita eggs in 24-well tissue culture plates in two different tests. The percentage of eggs parasitised by the fungi, the numbers of unhatched eggs and alive and dead juveniles were counted at 4 and 7 days after inoculation. The most promising fungi included five Paecilomyces isolates, 10 Fusarium isolates, 10 Pochonia isolates and one Acremonium isolate in test 1 or test 2. Paecilomyces lilacinus YES-2 and P. chlamydosporia HDZ-9 selected from the in vitro tests were formulated in alginate pellets and evaluated for M. incognita control on tomato in a greenhouse by adding them into a soil with sand mixture at rates of 0.2, 0.4, 0.8 and 1.6% (w/w). P. lilacinus pellets at the highest rate (1.6%) reduced root galling by 66.7%. P. chlamydosporia pellets at the highest rate reduced the final nematode density by 90%. The results indicate that P. lilacinus and P. chlamydosporia as pellet formulation can effectively control root-knot nematodes.  相似文献   

11.
The ovicidal activity of the nematophagous fungi Pochonia chlamydosporia (isolates VC1 and VC4), Duddingtonia flagrans (isolate AC001) and Monacrosporium thaumasium (isolate NF34) on Taenia saginata eggs was evaluated under laboratory conditions. T. saginata eggs were plated on 2% water-agar with fungal isolates and controls without fungus and examined after 5, 10 and 15 days. At the end of the experiment P. chlamydosporia showed ovicidal activity against T. saginata eggs (p < 0.05), mainly for internal egg colonization with results of 12.8% (VC1) and 2.2% (VC4); 18.1% (VC1) and 7.0% (VC4); 9.76% (VC1) and 8.0% (VC4) at 5, 10 and 15 days, respectively. The other fungi showed only lytic effect without morphological damage to the eggshell. Results demonstrated that P. chlamydosporia was effective in vitro against T. saginata eggs unlike the other fungi.  相似文献   

12.
Isolates of Pasteuria penetrans were evaluated for ecological characteristics that are important in determining their potential as biological control agents. Isolate P-20 survived without loss of its ability to attach to its host nematode in dry, moist, and wet soil and in soil wetted and dried repeatedly for 6 weeks. Some spores moved 6.4 cm (the maximum distance tested) downward in soil within 3 days with percolating water. The isolates varied greatly in their attachment to different nematode species and genera. Of five isolates tested in spore-infested soil, three (P-104, P-122, B-3) attached to two or more nematode species, whereas B-8 attached only to Meloidogyne hapla and B-I did not attach to any of the nematodes tested. In water suspensions, spores of isolate P-20 attached readily to M. arenaria but only a few spores attached to other Meloidogyne spp. Isolate P-104 attached to all Meloidogyne spp. tested but not to Pratylenchus scribneri. Isolate B-4 attached to all species of Meloidogyne and Pratylenchus tested, but the rate of attachment was relatively low. Isolate P-Z00 attached in high numbers to M. arenaria when spores were extracted from females of this nematode; when extracted from M. javanica females, fewer spores attached to M. arenaria than to M. javanica or M. incognita.  相似文献   

13.
Crop rotation is a common means of reducing pathogen populations in soil. Several rotation crops have been shown to reduce soybean cyst nematode (Heterodera glycines) populations, but a comprehensive study of the optimal crops is needed. A greenhouse study was conducted to determine the effect of growth and decomposition of 46 crops on population density of H. glycines. Crops were sown in soil infested with H. glycines. Plants were maintained until 75 days after planting, when the soil was mixed, a sample of the soil removed to determine egg density, and shoots and roots chopped and mixed into the soil. After 56 days, soil samples were again taken for egg counts, and a susceptible soybean (‘Sturdy’) was planted in the soil as a bioassay to determine egg viability. Sunn hemp (Crotalaria juncea), forage pea (Pisum sativum), lab-lab bean (Lablab purpureus), Illinois bundleflower (Desman-thus illinoensis), and alfalfa (Medicago sativa) generally resulted in smaller egg population density in soil or number of cysts formed on soybean in the bioassay than the fallow control. Sunn hemp most consistently showed the lowest numbers of eggs and cysts. As a group, legumes resulted in lower egg population densities than monocots, Brassica species, and other dicots.  相似文献   

14.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

15.
Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum and its relationship to BRD warrants further investigation.  相似文献   

16.
A high moisture level in the top 10 cm of soil at time of cutting of alfalfa increased the incidence of plant mortality and Fusarium wilt in soil infested with Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis in greenhouse and field microplot studies. Ranger alfalfa, susceptible to both D. dipsaci and F. oxysporum f. sp. medicaginis, was less persistent than Moapa 69 (nematode susceptible and Fusarium wilt resistant) and Lahontan alfalfa (nematode resistant with low Fusarium wilt resistance). In the greenhouse, the persistence of Ranger, Moapa 69, and Lahontan alfalfa plants was 46%, 64%, and 67% respectively, in nematode + fungus infested soil at high soil moisture at time of cutting. This compared to 74%, 84%, and 73% persistence of Ranger, Moapa 69, and Lahontan, respectively, at low soil moisture at time of cutting. Shoot weights as a percentage of uninoculated controls at the high soil moisture level were 38%, 40%, and 71% for Ranger, Moapa 69, and Lahontan, respectively. Low soil moisture at time of cutting negated the effect D. dipsaci on plant persistence and growth of subsequent cuttings, and reduced Fusarium wilt of plants in the nematode-fungus treatment; shoot weights were 75%, 90%, and 74% of uninoculated controls for Ranger, Moapa 69, and Lahontan. Similar results were obtained in the field microplot study, and stand persistence and shoot weights were less in nematode + fungus-infested soil at the high soil-moisture level (early irrigation) than at the low soil-moisture level (late irrigation).  相似文献   

17.
An alternative approach to applying entomopathogenic nematodes entails the distribution of nematodes in their infected insect hosts. Protection of the infected host from rupturing, and improving ease of handling, may be necessary to facilitate application. In this study our objective was to test the potential of a new method of formulating the infected hosts, i.e., enclosing the infected host in masking tape. Tenebrio molitor L. cadavers infected with Heterorhabditis indica Poinar, Karunakar and David or Steinernema carpocapsae (Weiser) were wrapped in tape using an automatic packaging machine; the machine was developed to reduce labor and to standardize the final product. The effects of the tape formulation on the ability to protect the cadavers from mechanical damage, nematode yield, and pest control efficacy were tested. After exposure to mechanical agitation at 7-d-post-infection, S. carpocapsae cadavers in tape were more resistant to rupture than cadavers without tape, yet H. indica cadavers 7-d-post-infection were not affected by mechanical agitation (with or without tape), nor was either nematode affected when 4-d-old cadavers were tested. Experiments indicated that infective juvenile yield was not affected by the tape formulation. Laboratory experiments were conducted measuring survival of the root weevil, Diaprepes abbreviatus (L.), or the small hive beetle, Aethina tumida Murray, after the application of two H. indica-infected hosts with or without tape per 15 cm pot (filled with soil). A greenhouse experiment was also conducted in a similar manner measuring survival of D. abbreviatus. In all experiments, both the tape and no-tape treatments caused significant reductions in insect survival relative to the control, and no differences were detected between the nematode treatments. Fifteen days post-application, the infected host treatments caused up to 78% control in A. tumida, 91% control in D. abbreviatus in the lab, and 75% in the greenhouse. These results indicate potential for using the tape-formulation approach for applying nematode infected hosts.  相似文献   

18.
Responses of 17 Prunus rootstocks or accessions (11 from the subgenus Amygdalus and 6 from the subgenus Prunophora) were evaluated against 11 isolates of Meloidogyne spp. including one M. arenaria, four M. incognita, four M. javanica, one M. hispanica, and an unclassified population from Florida. Characterization of plant response to root-knot nematodes was based on a gall index rating. Numbers of females and juveniles plus eggs in the roots were determined for 10 of the rootstocks evaluated against one M. arenaria, one M. incognita, one M. javanica, and the Florida isolate. These 10 rootstocks plus Nemaguard and Nemared were retested by growing three different rootstock genotypes together in containers of soil infested individually with each of the above four isolates. Garfi and Garrigues almonds, GF.305 and Rutgers Red Leaf peaches, and the peach-almond GF.677 were susceptible to all isolates. Differences in resistance were detected among the other rootstocks of the subgenus Amygdalus. The peach-almond GF.557 and Summergrand peach were resistant to M. arenaria and M. incognita but susceptible to M. javanica and the Florida isolate. Nemaguard, Nemared, and its two hybrids G x N no. 15 and G x N no. 22 were resistant to all but the Florida isolate. In the subgenus Prunophora, Myrobalan plums P.1079, P.2175, P.2980, and P.2984; Marianna plum 29C; and P. insititia plum AD.101 were resistant to all isolates. Thus, two different genetic systems of RKN resistance were found in the subgenus Amygdalus: one system acting against M. arenaria and M. incognita, and another system also acting against M. javanica. Prunophora rootstocks bear a complete genetic system for resistance also acting against the Florida isolate. The hypotheses on the relationships between these systems and the corresponding putative genes of resistance are presented.  相似文献   

19.
Meloidogyne chitwoodi reduced the growth of winter wheat ''Nugaines'' directly in relation to nematode density in the greenhouse, The relationship between top dry weight and initial nematode density suggests a tolerance limit of Nugaines wheat to M. chitwoodi of between 0.03 and 0.18 eggs/cm³ of soil; the value for relative minimum plant top weight was 0.45 g and 0.75 g, respectively. Growth of wheat in field microplots containing four population densities (0.003, 0.05, 0.75 and 9 eggs/cm³ soil) was not affected significantly at any inoculum level compared to controls during September to July, However, suppression of head weights of ''Fielder'' spring wheat grown May-July occurred in microplots initially infested with 0.75 and 9 eggs/cm³ soil. Reproduction (Pf/Pi) was poorer at these two inoculum levels as compared to the lower densities. In another greenhouse experiment, roots of wheat cultivars Fielder, ''Fieldwin,'' ''Gaines,'' ''Hyslop,'' and Nugaines became infected by M. chitwoodi, but not by M. hapla. Reproduction of M. chitwoodi was less on Gaines and Nugaines than on Fielder, Fieldwin, or Hyslop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号