首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.  相似文献   

2.
榕-蜂共生系统是桑科榕属(Ficus)植物与传粉榕小蜂专一互惠形成的生态学关系。但是,也有一些非传粉的小蜂出现在这个系统中,对榕-蜂共生系统可能产生较大的影响。西双版纳的聚果榕(Ficus racemosa)树上主要有5种非传粉小蜂,分别在榕果发育的不同阶段从果外向果内产卵。在传粉榕小蜂进果之前的花前期,Platyneura testaceApocrypta sp.和P. mayri这3种非传粉小蜂先后到果外产卵繁殖后代,对榕-蜂共生系统造成显著影响,尤其是影响传粉榕小蜂的繁殖。在传粉榕小蜂进果之后的间花期,P. mayriA. westwoodiP. agraensis这3种非传粉小蜂相继到果外产卵,它们虽然能减少种子形成和传粉榕小蜂繁殖的数量,但最终没有对榕-蜂共生系统造成显著的影响。造瘿类的P. mayri可在花前期和间花期产卵繁殖,在花前期产卵时它主要是影响传粉榕小蜂的繁殖,而在间花期产卵时它则更多地是影响种子的生产。  相似文献   

3.
在西双版纳,分别统计了对叶榕(Ficus hispida)雌花期雌雄果的进蜂量和花后期雌雄果繁殖的多个特征值,以此来探讨自然条件下,影响对叶榕及其传粉榕小蜂(Ceratosolen solmsi marchali)繁殖的因素。结果表明:单果内有效进蜂数量是影响种子生产和传粉榕小蜂繁殖的首要因素,而雌花期进果的传粉榕小蜂并不是都能全部进入果腔传粉或产卵,大部分蜂还未进到果腔就被夹死在顶生苞片层的通道里,能进入雌果内传粉的榕小蜂为(2.72±2.04)只·果-1,约占总进蜂量的52%;而在雄果里,能进入果腔的蜂量只有(2.08±1.65)只·果-1,占35%左右。由于雌果内的雌花显著比雄果内的雌花多,结合单果进蜂量雌多雄少的格局,最终单果生产的种子数量 (1 891.63 ± 471.53)比传粉榕小蜂的数量 (367.20 ± 208.02) 多5倍有余。在雌果里,供给传粉的雌花数量与所生产的种子数量之间呈显著的正相关,而没有接受到花粉或不能正常受精的雌花数量与种子数量呈显著的负相关。雄果不仅生产花粉,也是传粉榕小蜂繁殖的场所,在相关于传粉榕小蜂自身繁殖力的因子中,传粉榕小蜂产卵制造的瘿花数量对其种群数量有最大的影响;影响次之的是发育过程中死亡的个体数量,它可降低30%左右的传粉榕小蜂数量;影响排在第三位的是寄主的雌花数量。此外,3类非传粉者的存在,单果内平均可减少30多只传粉小蜂。  相似文献   

4.
Mutualistic interactions are embedded in networks of interactions that affect the benefits accruing to the mutualistic partners. Figs and their pollinating wasps are engaged in an obligate mutualism in which the fig is dependent on the fig pollinator for pollination services and the pollinator is dependent on fig ovules for brood sites. This mutualism is exploited by non-pollinating fig wasps that utilise the same ovules, but do not provide a pollination service. Most non-pollinating wasps oviposit from outside the inflorescence (syconium), where they are vulnerable to ant predation. Ficus schwarzii is exposed to high densities of non-pollinating wasps, but Philidris sp. ants patrolling the syconia prevent them from ovipositing. Philidris rarely catch wasps, but the fig encourages the patrolling by providing a reward through extra-floral nectaries on the surface of syconia. Moreover, the reward is apparently only produced during the phase when parasitoids are ovipositing. An ant-exclusion experiment demonstrated that, in the absence of ants, syconia were heavily attacked and many aborted as a consequence. Philidris was normally rare on the figs during the receptive phase or at the time of day when wasp offspring are emerging, so predation on pollinators was limited. However, Myrmicaria sp. ants, which only occurred on three trees, preyed substantially on pollinating as well as non-pollinating wasps. F. schwarzii occurs in small clusters of trees and has an exceptionally rapid crop turnover. These factors appear to promote high densities of non-pollinating wasps and, as a consequence, may have led to both a high incidence of ants on trees and increased selective pressure on fig traits that increase the payoffs of the fig–ant interaction for the fig. The fig receives no direct benefit from the reward it provides, but protects pollinating wasps that will disperse its pollen.  相似文献   

5.
6.
Fig trees ( Ficus spp.) and Agaonine fig‐wasps participate in an obligate mutualism. Fig wasps can only develop within fig inflorescences (syconia) and they are the only organisms capable of pollinating fig flowers. Other non‐pollinating wasps that lay eggs by inserting their ovipositors from the outside can also develop in syconia. These parasitic wasps may be parasitoids of either pollinating or other non‐pollinating wasps, or form galls in fig flowers or other tissues. Depending on this interaction, parasitic wasps may have various effects on the production of pollinating wasps and seeds. Wasps in the genus Idarnes, which parasitize New World figs (subgenus Urostigma), have an effect on wasp production but not on seed production. Heterandrium spp., which have short ovipositors and lay on external flowers, are infrequent and no effect on seed production has been documented. In the Colombian Andes, Idarnes spp. and Heterandrium spp. are the most frequent parasites of the Ficus andicola Pegoscapus sp. mutualism, affecting 62 and 43 percent of syconia, respectively. Controlling for other factors that influence wasp and seed production, such as number of foundresses, syconium size and tree, we found that Idarnes reduced pollinator production by almost half but did not reduce seed production, whereas Heterandrium reduced seed production by 40 percent, and marginally affected pollinator production. Our results provide the first clear documentation of Heterandrium spp. impact on fig seed production. Whether the relative abundance of this genus is a generalized phenomenon in montane forest remains to be determined.  相似文献   

7.
Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their “fruits” (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.  相似文献   

8.
Figs and their pollinating fig wasps are dependent on one another for propagation of their own kinds. The wasps reproduce by ovipositing through the styles of female flowers within the closed fig receptacles (syconia). About half of the female flowers within the syconia of monoecious figs have styles which are longer than the ovipositors of the wasp, and they will therefore produce seeds rather than wasp larvae. Since a longer ovipositor would enable a wasp to reach more ovules and deposit more eggs, the question arises at to why longer ovipositors have not evolved.
In an attempt to answer this question, four seemingly plausible hypotheses are examined but each is shown to be problematical in some way. Consideration is then given to a fifth hypothesis which proposes that ovipositor length is constrained by abortion of syconia with relatively few seed embryos and many agaonid larvae. It is argued first that this pattern of abortion will be selected during a sustained period of heavy wasp infestation because seeds will then become scarce relative to pollen-carrying wasps. Increased expenditure by the fig on seed production would therefore be favoured by natural selection. A greater expenditure on seeds would occur if young syconia with exceptionally heavy wasp infestations were dropped and the saved nutrients invested in syconia of a subsequent crop containing average levels of wasp larvae and seeds. Provided that the energy and nutrient cost of dropping young syconia is small, the selective advantage to the wasp of longer ovipositors is eliminated in this way. A stable coexistence of figs and wasps is therefore possible. The paper concludes by discussing two general predictions of the abortion hypothesis, and how these may be tested.  相似文献   

9.
Lifetime reproductive success in female insects is often egg‐ or time‐limited. For instance in pro‐ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro‐ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non‐pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.  相似文献   

10.
Abstract: What the real trade-off is among fig-supported wasps and the viable seeds of figs is heatedly debated in the studies of fig/fig wasp mutualism. In the present study, we collected wasp offspring (galls) and the viable seeds of premature fruits, and determined the foundress number in receptive fruits and all the types of wasps supported by Ficus racemosa L. during both the rainy and dry seasons in Xishuangbanna, China. The data show that the galls were positively correlated with viable seeds ( n = 32; r = 0.74; P < 0.001) when the proportion of vacant female flowers (PVFF) was high, in April (68.0%), and were negatively correlated with viable seeds ( n = 48; r =−0.59; P < 0.05) when PVFF were limited (PVFF = 42.6%) during a colder month (January). The mean foundress number per fruit during the colder months is significantly lower than during the warmer months ( F 5, 603= 27.9; P < 0.001) and pollinator wasps can live longer during the colder months. During the colder months, the proportions of non-pollinators and wasp offspring are higher than those found during other months, whereas the proportion of viable seeds is not different compared with that of other months. Non-pollinator wasps tend to oviposit the female flowers that have been oviposited by pollinator wasps. The non-pollinators only negatively affect pollinator wasps and there is no obvious negative effect of non-pollinator wasps on viable seeds, so ovipositing by non-pollinator wasps will not result in the extinction of the figs during the process of evolution. The results of the present study indicate that figs can allow less foundresses to be in fruit cavities when PVFF are limited, which provides supporting evidence for the previous assumption that the plants have developed a mechanism to maintain a stable system because of the conflicts between the parties involved.
(Managing editor: Ya-Qin HAN)  相似文献   

11.
What the real trade-off is among fig-supported wasps and the viable seeds of figs is heatedly debated in the studies of fig/fig wasp mutualism. In the present study, we collected wasp offspring (galls)and the viable seeds of premature fruits, and determined the foundress number in receptive fruits and all the types of wasps supported by Ficus racemosa L. during both the rainy and dry seasons in Xishuangbanna,China. The data show that the galls were positively correlated with viable seeds (n = 32; r = 0.74; P < 0.001)when the proportion of vacant female flowers (PVFF) was high, in April (68.0%), and were negatively correlated with viable seeds (n = 48; r =- 0.59; P < 0.05) when PVFF were limited (PVFF = 42.6%) during a colder month (January). The mean foundress number per fruit during the colder months is significantly lower than during the warmer months (F5, 603 = 27.9; P < 0.001) and pollinator wasps can live longer during the colder months. During the colder months, the proportions of non-pollinators and wasp offspring are higher than those found during other months, whereas the proportion of viable seeds is not different compared with that of other months. Non-pollinator wasps tend to oviposit the female flowers that have been oviposited by pollinator wasps. The non-pollinators only negatively affect pollinator wasps and there is no obvious negative effect of non-pollinator wasps on viable seeds, so ovipositing by non-pollinator wasps will not result in the extinction of the figs during the process of evolution. The results of the present study indicate that figs can allow less foundresses to be in fruit cavities when PVFF are limited, which provides supporting evidence for the previous assumption that the plants have developed a mechanism to maintain a stable system because of the conflicts between the parties involved.  相似文献   

12.
13.
Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium – a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls, male wasps have the additional burden of detecting conspecific females that are “hidden” behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons.In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment.  相似文献   

14.
Mutualisms involve cooperation between species and underpin several ecosystem functions. However, there is also conflict between mutualists, because their interests are not perfectly aligned. In addition, most mutualisms are exploited by parasites. Here, we study the interplay between cooperation, conflict and parasitism in the mutualism between fig trees and their pollinator wasps. Conflict occurs because each fig ovary can nurture either one seed or one pollinator offspring and, while fig trees benefit directly from seeds and pollinator offspring (pollen vectors), pollinators only benefit directly from pollinator offspring. The mechanism(s) of conflict resolution is debated, but must explain the widespread observation that pollinators develop in inner, and seeds in outer, layers of fig flowers. We recently suggested a role for non‐pollinating figs wasps (NPFWs) that are natural enemies or competitors of the pollinators and lay their eggs through the fig wall. Most NPFW offspring develop in outer and middle layer flowers, suggesting that inner flowers provide enemy‐free space for pollinator offspring. Here, we test the hypothesis that NPFWs cannot reach inner flowers, by measuring wasp and fig morphology at the species‐specific times of NPFW attack in the field. We found that three species of Sycoscapter and Philotrypesis wasps that parasitise pollinators could reach 34–73%, 75–92% and 82–97% of fig ovaries, respectively. Meanwhile, Eukobelea and Pseudidarnes gall‐formers, despite having shorter ovipositors, can access almost all fig flowers (93–99% and 100%), because they attack smaller (younger) fig fruits. Our mechanistic results from ovipositing wasps support spatial patterns of wasp offspring segregation within figs to suggest that inner ovules provide enemy‐free‐space for pollinators. This may contribute to mutualism stability by helping select for pollinators to avoid laying eggs where they are likely to be parasitised. These outer flowers then remain free to develop as seeds, promoting mutualism persistence.  相似文献   

15.
2005年8-11月,在西双版纳热带植物园对寄生对叶榕的佩妃延腹小蜂的产卵行为进行了观察,并解剖雄花前期的隐头果观察小蜂利用瘿花资源情况;对不同年份(2003、2004、2005),不同批次的隐头果内榕小蜂数量进行了统计。结果表明: 对叶榕Ficus hispida隐头果内寄生的佩妃延腹小蜂属Philotrypesis的两种榕小蜂——短尾佩妃延腹小蜂P. pilosa和长尾佩妃延腹小蜂Philotrypesis sp.,都是在果外利用长的产卵器刺穿隐头果果壁将卵产于果中雌花子房内。它们不能为寄主榕树传粉,为非传粉小蜂。短尾佩妃延腹小蜂的产卵时间与传粉榕小蜂接近,几乎与传粉榕小蜂同时到达隐头果产卵,该时期隐头果可供其产卵2天;而长尾佩妃延腹小蜂的产卵时间较晚,在传粉榕小蜂产卵后的第6天开始到果外产卵,并可持续产卵约一周时间。对叶榕雄花期雄果中的瘿花子房由于花梗长度不同而明显分为3层:果壁层(具短花梗),中间层和果腔层(具长花梗)。短尾佩妃延腹小蜂和长尾佩妃延腹小蜂在紧靠果壁的子房果壁层中分布最多,而很少存在于果腔层的瘿花子房内。在自然情况下,短尾佩妃延腹小蜂和长尾佩妃延腹小蜂寄生榕果的比率因季节和植株个体不同而变化。但无论是对榕果的寄生比率还是单果内寄生的数量,长尾佩妃延腹小蜂一般均比短尾佩妃延腹小蜂高,这可能与长尾佩妃延腹小蜂群体在隐头果上产卵时间比后者更长有关系。  相似文献   

16.
Plants that depend on a single species of insect pollinator must often contend with infrequent and unpredictable visitation. Prolongation of floral receptivity comes at the cost of reduced male and/or female reproductive success among older flowers. Fig trees (Ficus spp.) have a highly specific pollination symbiosis and individual inflorescences (syconia) that remain receptive for days or weeks. Reproductive success in monoecious fig trees involves production of both seeds and fig wasp offspring. We assessed whether the reproductive output of individual syconia changes with the length of time they waited for pollination, and whether the relative female and male reproductive success also changes. A pollination experiment was conducted in an SE Asian monoecious fig tree Ficus curtipes, in which receptive syconia were covered with mesh bags to exclude wasps and pollinated by single pollinators of this fig tree at their different receptive ages. When the syconia matured their size and contents were recorded. Seed quality was also assessed. The results showed that pollinators entered syconia that had been waiting for up to 36?days. The frequencies of abortions among syconia pollinated at different ages were low throughout. The number of un-utilised flowers increased progressively in older syconia. Seed production was highest in syconia entered on the first day of receptivity, whereas pollinator production peaked in syconia pollinated on day 12, then declined in older syconia. Consequently, overall reproductive efficiency declined with syconium age and floral sex allocation became more male-biased in older syconia. Older syconia also produced lighter seeds. These results suggest that un-pollinated syconia of F. curtipes can remain receptive for several weeks. This makes pollination of each syconium more likely, but at the cost of reduced productivity and with more ovules allocated to male function. However, the prolongation of floral receptivity has significance for the co-adaptation between syconia and fig wasps and for the evolution of the fig tree-fig wasp symbiosis.  相似文献   

17.
We report evidence that helps resolve two competing explanations for stability in the mutualism between Ficus racemosa fig trees and the Ceratosolen fusciceps wasps that pollinate them. The wasps lay eggs in the tree's ovules, with each wasp larva developing at the expense of a fig seed. Upon maturity, the female wasps collect pollen and disperse to a new tree, continuing the cycle. Fig fitness is increased by producing both seeds and female wasps, whereas short‐term wasp fitness increases only with more wasps, thereby resulting in a conflict of interests. We show experimentally that wasps exploit the inner layers of ovules first (the biased oviposition explanation), which is consistent with optimal‐foraging theory. As oviposition increases, seeds in the middle layer are replaced on a one‐to‐one basis by pollinator offspring, which is also consistent with biased oviposition. Finally, in the outer layer of ovules, seeds disappear but are only partially replaced by pollinator offspring, which suggests high wasp mortality (the biased survival or ‘unbeatable seeds’ explanation). Our results therefore suggest that both biased oviposition and biased survival ensure seed production, thereby stabilizing the mutualism. We further argue that biased oviposition can maintain biased survival by selecting against wasp traits to overcome fig defenses. Finally, we report evidence suggesting that F. racemosa balances seed and wasp production at the level of the tree. Because figs are probably selected to allocate equally to male and female function, a 1:1 seed:wasp ratio suggests that fig trees are in control of the mutualism.  相似文献   

18.
2004年8月至2005年8月在西双版纳热带植物园内,通过广泛收集歪叶榕榕小蜂标本、非传粉小蜂产卵行为学观察和阻止传粉者入果等实验方法,研究了我国西双版纳热带雨林下的一种榕树——歪叶榕Ficus cyrtophylla的榕小蜂群落组成结构、非传粉小蜂的繁殖策略以及它们对榕-蜂共生系统的影响。结果表明,歪叶榕中除了具有唯一传粉榕小蜂Blastophag sp.以外,还具有3种非传粉小蜂Platyneura sp.、Philotrypesis sp.和Sycoscapter sp.。在歪叶榕榕小蜂群落中,传粉榕小蜂占整个群落总数的92.21%,是群落的最主要组成者;主要的非传粉小蜂是Sycoscaptersp.,占5.78%; 其次是Philotrypesissp.,占1.84%,而Platyneurasp.仅占群落总数的0.17%。歪叶榕中的非传粉小蜂通过各自产卵时间和食性分化的策略来利用榕果中的资源繁殖后代。非传粉小蜂寄生使传粉榕小蜂的总数和其雌蜂数量都显著地降低,但是对传粉小蜂雄蜂数量没有显著影响,从而导致传粉榕小蜂的雄性性比显著地增加。这说明非传粉小蜂在选择寄居宿主时具有明显的倾向性,而且更多地将卵产于含有雌性传粉小蜂的瘿花之中。因此,非传粉小蜂通过减少雌性传粉小蜂的数量而降低了榕树的雄性适合度,从而在一定程度上对榕 蜂共生系统的稳定存在和发展产生了负面影响。  相似文献   

19.
The interaction between figs (Ficus spp., Moraceae) and their pollinator fig wasps (Hymenoptera: Agaonidae) is an obligate mutualism, but females of dioecious fig trees exploit fig wasps without providing rewards. Figs are closed inflorescences that typically trap pollinator females after entry, but some fig wasp species can re‐emerge (although wingless) and subsequently oviposit in and pollinate further figs. Using glasshouse populations, we examined the sex ratios and clutches laid by single foundresses of Kradibia tentacularis (Grandi) in their first and subsequent male figs of Ficus montana Blume, and how the probability of emergence and entering a second fig varied between seasons. A maximum of four figs were entered by any one foundress. Wingless foundresses were able to locate and enter figs up to 60 cm from the first fig they entered, but the probability of entry declined sharply with distance from that fig. The foundresses that re‐emerged produced slightly higher adult offspring totals than those that failed to re‐emerge. Clutch sizes of a single foundress in its first fig equalled those in all the subsequent figs combined, with clutch size per fig decreasing when more figs were entered. Smaller clutches had less female‐biased sex ratios. Figs were more numerous in summer than in winter, but the proportion of figs entered by only wingless foundresses remained unchanged. Movement between figs increases pollinator reproductive success in male figs, thereby encouraging foundresses that encounter a female tree to also move between and pollinate several female figs.  相似文献   

20.
Fig pollinating wasps and most non-pollinator wasps apply secretions from their poison sacs into oviposited flowers that appear necessary to the formation of the galls that their developing offspring consume. Thus, both eggs and poison sac secretions appear to be essential for wasp reproduction, but the relative investment in each is unknown. We measured relative investment in poison sac and egg production in pollinating and non-pollinating wasps associated with seven species of monoecious Panamanian figs representing both active and passive pollination syndromes. We then collected similar data for four fig hosts in China, where some wasp species in the genus Eupristina have lost the ability to pollinate (“cheaters”). All wasps examined possessed large poison sacs, and we found a strong positive correlation between poison sac size and absolute egg production. In the Panamanian species, the relative poison sac to egg investment was highest in the externally ovipositing non-pollinator wasps, followed by active pollinators, then by passive pollinators. Further, pollinator wasps of fig species with demonstrated host sanctions against “cheating” wasps showed higher investment in the poison sac than wasps of species without sanctions. In the Chinese samples, relative investment in the poison sac was indistinguishable between pollinators and “cheaters” associated with the same fig species. We suggest that higher relative investment in poison sac across fig wasp species reflects higher relative difficulty in initiating formation of galls and subsequently obtaining resources from the fig. We discuss the implications for the stability of the fig–wasp mutualism, and for the ability of non-pollinators to exploit this mutualism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号