首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
杨州  孔繁翔  史小丽  张民 《生态学报》2008,28(4):1857-1863
分离自太湖的壶状臂尾轮虫(Brachionus urceus (Linnaeus))按1000 ind·L-1的密度置于斜生栅藻(Scenedesmus obliquus)中培养24h后,用孔径0.10 靘的微孔滤膜抽滤,得到壶状臂尾轮虫培养滤液.将壶状臂尾轮虫培养滤液以20%的比例添加到纯培养的斜生栅藻中,进行为期7d的试验.结果表明壶状臂尾轮虫培养滤液能显著地影响斜生栅藻的形态,处理组中诱发性多细胞群体增加,导致处理组中斜生栅藻种群平均每个个体的细胞数量显著高于对照组.斜生栅藻在壶状臂尾轮虫诱发下形成群聚体可以解释为一种诱发性的反牧食防御,同时也进一步证实了栅藻对浮游动物牧食的响应是一种广泛存在的现象.壶状臂尾轮虫培养滤液处理后的斜生栅藻在生长率上与对照组没有显著性差异,说明诱发性防御群聚体形成的代价没有体现在对生长的影响上.在壶状臂尾轮虫培养滤液诱发下,较多栅藻细胞聚积在一起形成群聚体后,栅藻溶解性胞外多聚糖和固着性胞外多聚糖均有显著提高,而胞内多聚糖略有下降.但从总多聚糖含量看,处理组明显高于对照组,这也说明轮虫培养滤液刺激了栅藻多聚糖合成的额外增加,且被分泌到胞外,充当细胞之间的粘合物,促使细胞容易聚合形成群聚体,有效防御象轮虫这些小型浮游动物的进一步牧食,保持种群得以延续.  相似文献   

2.
为探索浮游动物和藻类之间可能存在的信息传递,研究了萼花臂尾轮虫培养滤液对铜绿微囊藻、斜生栅藻和小球藻的生长及群体形成的影响.把萼花臂尾轮虫按1000个·L-1的初始密度置于小球藻中培养24h后,用孔径0.15μm的微孔滤膜抽滤,得到轮虫培养滤液,此滤液中含有轮虫在生活过程中释放的一些信息化学物质.将轮虫培养滤液以20%的比例分别加入纯培养的铜绿微囊藻、斜生栅藻和小球藻中,进行为期7d的试验.结果表明,萼花臂尾轮虫培养滤液能显著地促进斜生栅藻的群体形成,而对铜绿微囊藻和小球藻在群体形成方面没有显著作用.另外,该滤液能显著提高小球藻种群的增长,对铜绿微囊藻和斜生栅藻的生长无明显影响.3种藻类对萼花臂尾轮虫的潜在牧食采取了不同的生态策略:斜生栅藻形成群体,增大摄食阻力,从而降低被摄食的风险;小球藻通过提高增长率来抵消被取食的损失;铜绿微囊藻是通过其它方式来降低被牧食(例如毒素).这些方式分别是这些藻类维持种群规模的反牧食防御策略之一.  相似文献   

3.
大型浅水富营养化湖泊中蓝藻水华形成机理的思考   总被引:247,自引:3,他引:244  
孔繁翔  高光 《生态学报》2005,25(3):589-595
湖泊富营养化依然是我国目前以及今后相当长一段时期内的重大水环境问题。研究蓝藻水华的形成机制 ,对于科学预测湖泊中蓝藻水华的产生 ,并采取相应措施减少其带来的影响具有重要的生态和环境意义。为探索富营养化湖泊中蓝藻水华形成机理 ,综述了目前对我国大型浅水湖泊蓝藻水华成因研究现状和对水华形成机理的一般认识。分析了导致蓝藻水华形成的化学、物理和生物等主要环境因素 ,论述了蓝藻 ,尤其是微囊藻成为水华优势种的可能原因。认为对水华的形成需要全面认识 ,营养盐浓度的升高可能仅是蓝藻水华形成、且人们可以加以控制的因素之一 ;在探索水华成因时 ,不能仅仅局限于夏季蓝藻水华发生时环境特征的研究与观察 ,而应该提前关注蓝藻的越冬生理生态特征、春季复苏的生态诱导因子及其阈值以及在复苏后 ,蓝藻如何在生长过程中形成群体 ,并逐步成为湖泊水生生态系统中的优势种乃至形成水华的过程。并需要对蓝藻越冬的生存对策、蓝藻群体的形成的条件、蓝藻在春季复苏的触发条件及其生态阈值、以及蓝藻在与其它藻类种群竞争中取胜的生理生化特征有足够的认识。蓝藻水华的“暴发”是表观现象 ,其前提还是藻类一定的生物量 ,且是一个逐渐形成的过程。根据生态学的基本理论和野外对水华形成过程的原位观测  相似文献   

4.
浮游动物可以通过牧食作用来抑制浮游藻类的增长, 同时浮游动物排泄的营养盐又可以促进浮游藻类的增长,二者的强弱是浮游动物控制浮游藻类的关键。通过人为去除处理组水体中的浮游动物, 研究浮游动物生物量和群落结构的不同对富营养水体中浮游藻类的影响。研究结果显示处理组浮游动物总生物量低于空白组, 且缺乏大型枝角类溞属(Daphnia sp.); 去除浮游动物显著降低了水体中的总氮和总磷浓度以及浮游藻类生物量(叶绿素a), 同时增加了附着藻的生物量; 并且影响了浮游藻类群落结构: 对照组是空星藻(Coelastrum sp.)为优势种而处理组则为湖丝藻(Limnothrix sp.)和四集藻(Palmella sp.)。结果表明浮游动物排泄营养盐产生的上行效应大于牧食作用产生的下行效应。  相似文献   

5.
蓝藻群体颗粒驱动元素地球化学循环研究进展   总被引:2,自引:0,他引:2  
在天然淡水和半咸水水体中,水华蓝藻常以群体颗粒的形态存在。在蓝藻群体颗粒中聚集着大量异养细菌,和蓝藻共同构成了具有独特生态功能的基本单元。与蓝藻单体细胞相比,蓝藻群体颗粒呈现出许多独有的特性,如内部丰富的有机质、急剧的氧化还原梯度、密切的种间互作关系等等。这些特质使得蓝藻群体颗粒在水体中成为元素地球化学循环的反应热点。同时,在蓝藻群体颗粒中也存在着远比单细胞藻类-浮游细菌之间更为密切的种间互作。本综述围绕蓝藻群体颗粒的这些特点,结合当前的研究进展,重点阐述蓝藻群体颗粒中的生物、生理、化学过程,讨论其驱动宏观生态现象的微观机制。未来蓝藻群体颗粒组学研究和多组学微生态数据库的构建或成为探索蓝藻群体颗粒中生命过程及揭示蓝藻水华暴发机制的突破口之一。  相似文献   

6.
海水养虾池浮游动物对浮游植物牧食力的研究   总被引:11,自引:4,他引:7  
赵文  刘国才 《生态学报》1999,19(2):217-222
利用常规显微镜直接计数法评估了海水养虾池浮游动物对浮游藻类的牧食力。测得虾池浮游动物对水柱浮游植物的总滤水率为80.38ml/(L·h),每个浮游动物的滤水率平均为11.13μl/(ind·h),总牧食率为10.50μg/(L·h),即1.25ngC/(ind·h)。浮游动物对水柱原位主要浮游藻类的选食,以隐藻和舟形藻为最多,其次是扁藻和小环藻,6h内对上述4种藻类的选食率分别为92.68%、72.46%、36.22%和32.56%,其相应的选择指数依次为0.7331、0.6717、0.4345和0.3913。对水柱总体而言,6h内有35.72%的主要浮游藻类被选食了。  相似文献   

7.
蓝藻堆积和螺类牧食对苦草生长的影响   总被引:2,自引:0,他引:2  
何虎  何宇虹  姬娅婵  郭亮  刘正文  李宽意 《生态学报》2012,32(17):5562-5567
设计了双因素四组处理(对照组,加螺组,加藻组,螺藻组)的室外受控实验,模拟湖泊沿岸带水华蓝藻的堆积以及底栖螺类的牧食活动对沉水植物苦草生长的影响。结果表明:蓝藻堆积(水体叶绿素a浓度为220μg/L)对苦草的生长具有明显的抑制作用,和对照组以及加螺组相比,加藻组和螺藻组中苦草的相对生长率分别下降了40.9%和36.4%,分株数也分别下降了56.4%和64.1%,分析认为蓝藻在水体表层堆积所产生的遮光可能是抑制底层苦草生长的主要原因。然而,环棱螺能在一定程度上促进苦草的生长,加螺组和螺藻组中苦草的相对生长率和分株数分别要明显高于对照组和加藻组,这可能要归因于螺类的牧食去除了沉水植物表面附着生物。实验中蓝藻堆积和螺类牧食对苦草的各项生长指标均无显著的交互作用,但蓝藻对苦草生长的抑制作用要远大于螺类对植物生长的促进作用。研究证实了在富营养浅水湖泊中,水华蓝藻在湖泊沿岸带的堆积会严重胁迫沉水植物的生长,而底栖螺类的牧食活动则能在一定程度上提高植物在不良环境下的生存能力。  相似文献   

8.
海水养虾池浮游运行对浮游植物牧食力的研究   总被引:2,自引:0,他引:2  
赵文  刘国才 《生态学报》1999,19(2):217-222
利用常规显微镜直接计数法评估了海水养虾池浮游动物对浮游藻类的牧食力,测得虾池浮游运行对水柱浮游植物的总滤水率为80.38ml/(L·h),每个浮游动物的滤水率平均为11.13μl(ind·h),总牧食率为10.50μg/(L·h),即1.25ng℃/(ind·h)、浮游动物对水柱原位主要浮游藻类的选食,、以隐菏和舟形藻为最多,其次是扁藻和小环藻,6h内对上述4种藻类的选食率为92.68%、72.4  相似文献   

9.
湖泊蓝藻水华发生机理研究进展   总被引:43,自引:6,他引:37  
马健荣  邓建明  秦伯强  龙胜兴 《生态学报》2013,33(10):3020-3030
蓝藻水华是富营养化湖泊常见的生态灾害,通过产生毒素、死亡分解时使水体缺氧和破坏正常的食物网威胁到饮用水安全、公众健康和景观,会造成严重的经济损失和社会问题,揭示其发生机理是进行防治的基础。综述了蓝藻水华发生机理的主要假说和证据,主要分为环境因子(营养盐、氮磷比、温度、微量元素、浮游动物牧食、水文和气象条件等)和生理生态特性(伪空泡、胶质鞘、CO2浓缩机制、适应低光强、贮藏营养物质、防晒、产毒素和固氮等)两个方面;评述了主要新理论,展望了今后的研究。到目前为止的研究表明寻找一两个关键因子并不能阐明蓝藻水华的发生机理。现存的理论或假说尽管已经在蓝藻水华的防治实践中产生重要作用,但仍然未能清楚地阐释其发生的客观规律。认为蓝藻水华是在各种环境因子(外因)的耦合驱动下,水华蓝藻由于其独特的生理生态特性(内因),产生巨大的生物量而在浮游植物群落中占绝对优势,在合适的水文气象条件下集聚于水表而形成。因此水华机理的研究应同时关注水华蓝藻的生理生态学规律和蓝藻水华发生的各种环境条件。不同环境因子协同影响水华蓝藻的不同生理生态特性的表达,从而影响水华的发生过程,将可能是以后研究的重点。蓝藻水华机理的研究在微观方面正趋向于应用分子生物学手段分析蓝藻生理过程,宏观方面则将广泛应用遥感遥测技术观测全湖蓝藻的变化规律。今后加强对水华蓝藻生理生态特性的基因表达与调控和环境多因子耦合作用于蓝藻水华过程的研究将有重要意义。蓝藻水华的机理研究包括现象、过程和原因3个层次的问题,通过大量的现象和过程的研究,不断揭示其发生过程中水华蓝藻的群落演替、种群发展、细胞活性和分子机理等变化规律,才能找到其发生的真正原因,为其防治提供理论依据和更好的治理措施。在蓝藻水华防治方面,控制营养盐和生态修复可能将是今后很长时间内最根本最有效和最具操作性的方法。  相似文献   

10.
邱东茹 《水生生物学报》2020,44(5):1008-1013
有毒微囊藻水华在太湖、巢湖和滇池等饮用水源地频繁暴发, 对居民健康和水产养殖等构成严重威胁, 亟需开发新技术加以有效控制和利用。在水华暴发时, 蓝藻大量分泌胞外多聚物而形成细胞群体, 是蓝藻水华发生的关键和前提。蓝藻群体中胶质状胞外多聚物由胞外多糖、蛋白质和其他生物大分子组成, 对其结构、功能和生物合成途径研究了解仍然有限。生物信息学和比较基因组学分析发现微囊藻和其他多种蓝藻中编码大量的具有称之为PEP-CTERM结构域的潜在胞外蛋白质, 这些潜在的蛋白质可能通过特殊的分选系统分泌到细胞表面, 与胞外多糖相互作用形成结构更复杂的胞外多聚物, 介导细胞群体的形成和水华发生。亟需建立微囊藻遗传操作技术, 深入揭示胞外多聚物生物合成和群体形成的分子机制, 寻找控制蓝藻胞外多聚物的组装和分泌及群体形成的关键靶点, 将有助于揭示蓝藻水华形成机理及开发新型控藻技术。  相似文献   

11.
It is becoming increasingly evident that the efficiency of zooplankton grazing on algae is not only a matter of quantity of the grazer relative to its food. Planktonic primary producers are not defenseless food-particles that are easily harvested by the consumers. Several algal species are able to adjust their phenotype (colony formation, spines, size) in such a way that it results in a reduced grazing pressure. It was recently demonstrated that morphological changes in the cell wall of green algae, induced by nutrient limitation and UV-B stress, may reduce their digestibility. A high fraction of induced cells pass intact and viable through the gut of the zooplankters, such that the grazing impact on the population is strongly reduced. It was also found that the presence of exudates (infochemicals) released by daphnids may change the morphology of algae. Unicellular green algae of the genus Scenedesmus were induced to form eight-cell coenobial types, heavily armed with spines, within three to five days after adding filtered water from an algal culture with Daphnia present. Both defence mechanisms may play an important role in zooplankton production and competition, and may serve as an example of highly efficient strategies to resist heavy grazing pressure.  相似文献   

12.
The common green alga Scenedesmus obliquus may respond morphologicallyto the presence of natural enemies. Exposure to water-bornecues from the herbivorous zooplankton Ceriodaphnia reticulata,Daphnia galeata x hyalina, Daphnia magna and Daphnia pulicariastimulated the formation of protective colonies in S. obliquus.This response seemed strongly related to the amount of algaegrazed upon, because a highly significant correlation betweenthe amount of S. obliquus consumed and the induced colony formationwas found. However, when exposed to medium that had been inhabitedby the carnivorous zooplankton Bythotrephes longimanus and Leptodorakindtii, no colony formation occurred. A similar result wasobtained in two different experiments when S. obliquus was exposedto filtrate from cultures of the freshwater fish ide (Leuciscusidus) and perch (Perca fluviatilis). These results support thehypothesis that S. obliquus responds to a herbivorous zooplanktonchemical cue, rather than to a more general animal excretoryproduct. No support was obtained for the hypothesis that cuesfrom the enemy of their enemy could serve as signals to thealgae: despite the presence of filtrate from fish culture, filtratefrom Daphnia cultures induced the formation of colonies in S.obliquus. The biological activity seems to be linked to thealga–grazer interaction, which ensures a reliable cuethat evokes the morphological response of S. obliquus only whennecessary. The grazer-induced colony formation can be viewedas an adaptive reaction in habitats with variable grazing pressurefrom an assemblage of many different herbivores to pare downmortality through grazing.  相似文献   

13.
We investigated if (1) dissolved compounds excreted by Phaeocystis globosa and (2) transparent exopolymer particles (TEP) formed from carbohydrates excreted into the water affect the feeding of nauplii and females of the calanoid copepod Temora longicornis during a P. globosa bloom. Copepod grazing on the diatom Thalassiosira weissflogii in the presence of these possible grazing deterrents was measured during three successive weeks of a mesocosm study, simulating the development of a P. globosa bloom. Our results demonstrate no indication for the presence of feeding deterrents in the dissolved phase, but a strong inhibitory effect of transparent exopolymer particles (TEP) on the consumption of algae by both nauplii and adult copepods. The inhibitory effect of TEP was connected to the accumulation of DOM during the progress of the bloom. We suggest that a reduction in the grazing pressure of zooplankton may increase the survival of the liberated single cells during disruption of colonies and allow seeding populations to persist. Furthermore, P. globosa reduces the trophic efficiency of the food web not only by withdrawal of its colonies from grazing but also by a relaxation of the grazing pressure on co-occurring phytoplankton and by alteration of the food web structure via TEP production.  相似文献   

14.
In this paper, we analyzed a mathematical model of algal-grazer dynamics, including the effect of colony formation, which is an example of phenotypic plasticity. The model consists of three variables, which correspond to the biomasses of unicellular algae, colonial algae, and herbivorous zooplankton. Among these organisms, colonial algae are the main components of algal blooms. This aquatic system has two stable attractors, which can be identified as a zooplankton-dominated (ZD) state and an algal-dominated (AD) state, respectively. Assuming that the handling time of zooplankton on colonial algae increases with the colonial algae biomass, we discovered that bistability can occur within the model system. The applicability of alternative stable states in algae-grazer dynamics as a framework for explaining the algal blooms in real lake ecosystems, thus, seems to depend on whether the assumption mentioned above is met in natural circumstances.  相似文献   

15.
Degans  Hanne  De Meester  Luc 《Hydrobiologia》2002,479(1-3):39-49
Biomanipulation, through the reduction of fish abundance resulting in an increase of large filter feeders and a stronger top-down control on algae, is commonly used as a lake restoration tool in eutrophic lakes. However, cyanobacteria, often found in eutrophic ponds, can influence the grazing capacity of filter feeding zooplankton. We performed grazing experiments in hypertrophic Lake Blankaart during two consecutive summers (1998, with and 1999, without cyanobacteria) to elucidate the influence of cyanobacteria on the grazing pressure of zooplankton communities. We compared the grazing pressure of the natural macrozooplankton community (mainly small to medium-sized cladocerans and copepods) with that of large Daphnia magna on the natural bacterioplankton and phytoplankton prey communities. Our results showed that in the absence of cyanobacteria, Daphnia magna grazing pressure on bacteria was higher compared to the grazing pressure of the natural zooplankton community. However, Daphnia grazing rates on phytoplankton were not significantly different compared to the grazing rates of the natural zooplankton community. When cyanobacteria were abundant, grazing pressure of Daphnia magnaseemed to be inhibited, and the grazing pressure on bacteria and phytoplankton was similar to that of the natural macrozooplankton community. Our results suggest that biomanipulation may not always result in a more effective top-down control of the algal biomass.  相似文献   

16.
Theoretical studies have predicted that inducible defenses affect food chain dynamics and persistence. Here we review and evaluate laboratory experiments that tested hypotheses developed from these theoretical studies. This review specifically focuses on the effects of inducible defenses in phytoplankton-rotifer food chain dynamics. First, we describe the occurrence of colony formation within different strains of green algae (Scenedesmaceae) in response to infochemicals released during grazing by the herbivorous rotifer Brachionus calyciflorus. Then we examined the effects of inducible defenses on the population dynamics of this planktonic system in which algal strains that differed in their defense strategies were used. Simple food chains were composed of green algae (Scenedesmaceae), herbivorous rotifers (Brachionus calyciflorus) and carnivorous rotifers (Asplanchna brightwellii). In this system B. calyciflorus exhibits an inducible defense against predation by developing long postero-lateral spines. Experimental studies showed that inducible defenses, as opposed to their absence, could prevent high-amplitude population fluctuations. We discuss the dual effects of induced defenses on extinction probabilities and consider the fit of a theoretical model to experimental data to understand the mechanisms that underlie the observed dynamics. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

17.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

18.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

19.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from ?0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号