首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A group of about 300 evenly distributed DNA markers from a high density RFLP linkage map of rice constructed using an F2 population derived from a japonica variety, Nipponbare, and an indica variety, Kasalath, were used to evaluate gene order and genetic distance in four other rice mapping populations. The purpose of this study was to determine the degree to which information gained from the high density linkage map could be applied to other mapping populations, particularly with regard to its utility in bridging quantitative traits and molecular and physical mapping information. The mapping populations consisted of two F2 populations derived from Dao Ren Qiao/Fl-1084 and Kinandangputi/Fl-1007, recombinant inbred lines from Asominori/IR24, and a backcross population from Sasanishiki/Habataki//Sasanishiki. All DNA markers commonly mapped in the four populations showed the same linkage groups as in the Nipponbare/Kasalath linkage map with conserved linkage order. The genetic distance between markers among the different populations did not vary to a significant level in any of the 12 chromosomes. The differences in some markers could be attributed to the size of the population used in the construction of the linkage maps. Furthermore, the conservation of linkage order found in the distal region of chromosomes 11 and 12 was also confirmed in the RFLP maps based on the four populations of rice. These suggest that any major genetic information from the Nipponbare/Kasalath map can be expected to be approximately the same in other crosses or populations. This high density RFLP linkage map, which is being utilized in constructing a physical map of rice, can be very useful in interpreting genome structure with great accuracy in other populations. Key words : linkage map, japonica, indica, gene order, genetic distance.  相似文献   

2.
This study describes development of a consensus genetic linkage map of bovine chromosome 24 (BTA24). Eight participating laboratories contributed data for 58 unique markers including a total of 25 409 meioses. Eighteen markers, which were typed in more than one reference population, were used as potential anchors to generate a consensus framework map. The framework map contained 16 loci ordered with odds greater than 1000:1 and spanned 79.3 cM. Remaining markers were included in a comprehensive map relative to these anchors. The resulting BTA24 comprehensive map was 98.3 cM in length. Average marker intervals were 6.1 and 2.5 cM for framework and comprehensive maps, respectively. Marker order was generally consistent with previously reported BTA24 linkage maps. Only one discrepancy was found when comparing the comprehensive map with the published USDA-MARC linkage map. Integration of genetic information from different maps provides a high-resolution BTA24 linkage map.  相似文献   

3.
Brown SE  Severson DW  Smith LA  Knudson DL 《Genetics》2001,157(3):1299-1305
Two approaches were used to correlate the Aedes aegypti genetic linkage map to the physical map. STS markers were developed for previously mapped RFLP-based genetic markers so that large genomic clones from cosmid libraries could be found and placed to the metaphase chromosome physical maps using standard FISH methods. Eight cosmids were identified that contained eight RFLP marker sequences, and these cosmids were located on the metaphase chromosomes. Twenty-one cDNAs were mapped directly to metaphase chromosomes using a FISH amplification procedure. The chromosome numbering schemes of the genetic linkage and physical maps corresponded directly and the orientations of the genetic linkage maps for chromosomes 2 and 3 were inverted relative to the physical maps. While the chromosome 2 linkage map represented essentially 100% of chromosome 2, approximately 65% of the chromosome 1 linkage map mapped to only 36% of the short p-arm and 83% of the chromosome 3 physical map contained the complete genetic linkage map. Since the genetic linkage map is a RFLP cDNA-based map, these data also provide a minimal estimate for the size of the euchromatic regions. The implications of these findings on positional cloning in A. aegypti are discussed.  相似文献   

4.
George AW 《Genetics》2005,171(2):791-801
Mapping markers from linkage data continues to be a task performed in many genetic epidemiological studies. Data collected in a study may be used to refine published map estimates and a study may use markers that do not appear in any published map. Furthermore, inaccuracies in meiotic maps can seriously bias linkage findings. To make best use of the available marker information, multilocus linkage analyses are performed. However, two computational issues greatly limit the number of markers currently mapped jointly; the number of candidate marker orders increases exponentially with marker number and computing exact multilocus likelihoods on general pedigrees is computationally demanding. In this article, a new Markov chain Monte Carlo (MCMC) approach that solves both these computational problems is presented. The MCMC approach allows many markers to be mapped jointly, using data observed on general pedigrees with unobserved individuals. The performance of the new mapping procedure is demonstrated through the analysis of simulated and real data. The MCMC procedure performs extremely well, even when there are millions of candidate orders, and gives results superior to those of CRI-MAP.  相似文献   

5.
A. L. Archibald  C. S. Haley  J. F. Brown  S. Couperwhite  H. A. McQueen  D. Nicholson  W. Coppieters  A. Van de Weghe  A. Stratil  A. K. Winterø  M. Fredholm  N. J. Larsen  V. H. Nielsen  D. Milan  N. Woloszyn  A. Robic  M. Dalens  J. Riquet  J. Gellin  J. -C. Caritez  G. Burgaud  L. Ollivier  J. -P. Bidanel  M. Vaiman  C. Renard  H. Geldermann  R. Davoli  D. Ruyter  E. J. M. Verstege  M. A. M. Groenen  W. Davies  B. Høyheim  A. Keiserud  L. Andersson  H. Ellegren  M. Johansson  L. Marklund  J. R. Miller  D. V. Anderson Dear  E. Signer  A. J. Jeffreys  C. Moran  P. Le Tissier  Muladno  M. F. Rothschild  C. K. Tuggle  D. Vaske  J. Helm  H. -C. Liu  A. Rahman  T. -P. Yu  R. G. Larson  C. B. Schmitz 《Mammalian genome》1995,6(3):157-175
A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (16.5 Morgans) than the genetic map of the homogametic sex (female) (21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be 18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.  相似文献   

6.
An integrated genetic/RFLP map of the Arabidopsis thaliana genome   总被引:4,自引:2,他引:2  
We have assembled an integrated genetic/restriction fragment length polymorphism (RFLP) linkage map of the nuclear genome of the flowering plant Arabidopsis thaliana . The map is based on two independent sets of RFLP data, RFLP data for 123 new markers, and pair-wise segregation data of 125 classical genetic markers. Mathematical integration of the independent data sets was performed using the joinmap computer package. Sixty-two markers common to two or more data sets were exploited to facilitate integration of the individual maps. The current map, which encompasses a total genetic distance of 520 cM, contains 125 classical genetic markers and 306 RFLP markers. Comparison of the integrated consensus map with the individual maps demonstrates that the overall linear order of the integrated map is in good agreement with the component maps. It must be emphasized, however, that the integrated map represents the 'best fit' which is clearly subject to the statistical limitations of the available data. We present several examples where local differences in map order are observed between the integrated and component maps. It is likely, given the problems associated with statistical integration of mapping data from different populations, that the integrated map will contain additional local inconsistencies and problematic regions. None the less, the unified map provides a framework for building an increasingly accurate and useful map. Subsequent refinements of the map will be available electronically end researchers are invited to submit revised map data to the corresponding author for inclusion in future updates (see Appendix 1).  相似文献   

7.
Y Q Wu  Yinghua Huang 《Génome》2007,50(1):84-89
Sorghum bicolor (L.) Moench is an important grain and forage crop grown worldwide. We developed a simple sequence repeat (SSR) linkage map for sorghum using 352 publicly available SSR primer pairs and a population of 277 F2 individuals derived from a cross between the Westland A line and PI 550610. A total of 132 SSR loci appeared polymorphic in the mapping population, and 118 SSRs were mapped to 16 linkage groups. These mapped SSR loci were distributed throughout 10 chromosomes of sorghum, and spanned a distance of 997.5 cM. More important, 38 new SSR loci were added to the sorghum genetic map in this study. The mapping result also showed that chromosomes SBI-01, SBI-02, SBI-05, and SBI-06 each had 1 linkage group; the other 6 chromosomes were composed of 2 linkage groups each. Except for 5 closely linked marker flips and 1 locus (Sb6_34), the marker order of this map was collinear to a published sorghum map, and the genetic distances of common marker intervals were similar, with a difference ratio 相似文献   

8.
The turkey is an agriculturally important species for which, until now, there is no published genetic linkage map based on microsatellite markers--still the markers most used in the chicken and other farm animals. In order to increase the number of markers on a turkey genetic linkage map we decided to map new microsatellite sequences obtained from a GT-enriched turkey genomic library. In different chicken populations more than 35-55% of microsatellites are polymorphic. In the turkey populations tested here, 43% of all turkey primers tested were found to be polymorphic, in both commercial and wild type turkeys. Twenty linkage groups (including the Z chromosome) containing 74 markers have been established, along with 37 other unassigned markers. This map will lay the foundations for further genetic mapping and the identification of genes and quantitative trait loci in this economically important species. Genome comparisons, based on genetic maps, with related species such as the chicken would then also be possible. All primer information, polymerase chain reaction (PCR) conditions, allele sizes and genetic linkage maps can be viewed at http://roslin.thearkdb.org/. The DNA is also available on request through the Roslin Institute.  相似文献   

9.
Molecular genetic maps can provide information for the identification and localization of major genes associated with quantitative traits. However, there are currently no published genetic linkage maps for any ratites. Herein, a preliminary genetic map of ostrich was developed using a two-generation ostrich reference family by linkage analysis of 104 polymorphic microsatellite markers, including 40 novel markers reported in this study. A total of 35 microsatellite markers were placed into 13 linkage groups. Five linkage groups are composed of three or more loci, whereas the remaining eight groups each contained two markers. The sex-averaged map spans 365.4 cM. The marker interval of each linkage group ranges from 5.3 to 25.4 cM, and the average interval distance is 16.61 cM. The male map covers 342.7 cM, with an average intermarker distance of 15.58 cM, whereas the female map is 456.7 cM, with the average intermarker spacing of 20.76 cM. In order to screen the orthologous loci between ostrich and chicken, all of the flanking sequences of the 104 polymorphic loci, nine monomorphic loci and a further 12 reported microsatellite loci for ostrich were screened against the chicken genomic sequence using the BLAST algorithm (Altschul et al., 1990), and corresponding orthologs were found for 13 sequences. The microsatellite loci and genetic map developed in this study will be useful for QTL mapping, population genetics and phylogenetic studies in the ratite. In addition, the 13 orthologous loci identified in this study will be advantageous to the construction of a comparative genetic map between chicken and ostrich.  相似文献   

10.
Xie W  Zhang X  Cai H  Huang L  Peng Y  Ma X 《Génome》2011,54(3):212-221
Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.  相似文献   

11.
MOTIVATION: Integrated maps are useful for gene mapping and establishing the relationship between recombination and sequence. In this paper we describe algorithms and their implementation for constructing sequence-based integrated maps of the human chromosomes, which are presented in LDB2000, a web based resource. Gene mapping efforts are now focussing on linkage disequilibrium mapping and extension of the integrated map to represent the extent of linkage disequilibrium in different genomic regions would further increase the utility of these maps. RESULTS: Sequence-based integrated maps have been completed for chromosomes 21 and 22. These maps provide locations for genes and polymorphic markers in sequence and on genetic linkage, radiation hybrid and cytogenetic scales. Single nucleotide polymorphisms associated with genes in the maps are also included and their sequence locations indicated. Related locus information, such as aliases and expression information, can be searched on the WWW site.  相似文献   

12.
Genetic maps serve as frameworks for determining the genetic architecture of quantitative traits, assessing structure of a genome, as well as aid in pursuing association mapping and comparative genetic studies. In this study, a dense genetic map was constructed using a high-throughput 1,536 EST-derived SNP GoldenGate genotyping platform and a global consensus map established by combining the new genetic map with four existing reliable genetic maps of apple. The consensus map identified markers with both major and minor conflicts in positioning across all five maps. These major inconsistencies among marker positions were attributed either to structural variations within the apple genome, or among mapping populations, or genotyping technical errors. These also highlighted problems in assembly and anchorage of the reference draft apple genome sequence in regions with known segmental duplications. Markers common across all five apple genetic maps resulted in successful positioning of 2875 markers, consisting of 2033 SNPs and 843 SSRs as well as other specific markers, on the global consensus map. These markers were distributed across all 17 linkage groups, with an average of 169±33 marker per linkage group and with an average distance of 0.70±0.14 cM between markers. The total length of the consensus map was 1991.38 cM with an average length of 117.14±24.43 cM per linkage group. A total of 569 SNPs were mapped onto the genetic map, consisting of 140 recombinant individuals, from our recently developed apple Oligonucleotide pool assays (OPA). The new functional SNPs, along with the dense consensus genetic map, will be useful for high resolution QTL mapping of important traits in apple and for pursuing comparative genetic studies in Rosaceae.  相似文献   

13.
Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx   总被引:4,自引:0,他引:4  
Two linkage maps for grape (Vitis spp.) have been developed based on 81 F(1) plants derived from an interspecific cross between the wine cultivar Moscato bianco (Vitis vinifera L.) and a Vitis riparia Mchx. accession, a donor of pathogen resistance traits. The double pseudotest-cross mapping strategy was applied using three types of molecular markers. The efficiency of SSRs to anchor homologous linkage groups from different Vitis maps and the usefulness of AFLPs in saturating molecular linkage maps were evaluated. Moreover, the SSCP technique was developed based on sequence information in public databases concerning genes involved in flavonoid and stilbene biosynthesis. For the maternal genetic map a total of 338 markers were assembled in 20 linkage groups covering 1,639 cM, whereas 429 loci defined the 19 linkage groups of the paternal map which covers 1,518 cM. The identification of 14 linkage groups common to both maps was possible based on 21 SSR and 19 AFLP loci. The position of SSR loci in the maps presented here was consistent with other published mapping experiments in Vitis.  相似文献   

14.
We have constructed a linkage map of 14 short tandem repeat polymorphisms (11 with heterozygosity > 70%) on the long arm of human chromosome 22 using 23 non-CEPH pedigrees. Twelve of the markers could be positioned uniquely with a likelihood of at least 1,000:1, and distributed at an average distance of 6.62 cM (range 1.5–16.1 cM). The sex-combined map covers a total of 79.6 cM, the female map 93.2 cM and the male map 64.6 cM. Based on comparisons between physical maps and other genetic maps, we estimate that our map covers 70%–80% of the chromosome. The map integrates markers from previous genetic maps and uniquely positions one marker (D22S307). Data from physical mapping on the location of four genetic markers correlates well with our linkage map, and provides information on an additional marker (D22S315). This map will facilitate high resolution mapping of additional polymorphic loci and disease genes on chromosome 22, and act as a reference for building and verifying physical maps.  相似文献   

15.
M M Sewell  B K Sherman  D B Neale 《Genetics》1999,151(1):321-330
A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation outbred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent populations of parental meioses, and genetic maps were constructed to represent each parent. The rate of meiotic recombination was significantly greater for males than females, as was the average estimate of genome length for males (1983.7 cM [Kosambi mapping function (K)]) and females [1339.5 cM(K)]. The integration of individual maps allows for the synthesis of genetic information from independent sources onto a single consensus map and facilitates the consolidation of linkage groups to represent the chromosomes n = 12 of loblolly pine. The resulting consensus map consists of 357 unique molecular markers and covers approximately 1300 cM(K).  相似文献   

16.
We have constructed a 2.4-cM resolution genetic linkage map for chromosome 7q that is bounded by centromere and telomere polymorphisms and contains 66 loci (88 polymorphic systems), 38 of which are uniquely placed with odds for order of at least 1000:1. Ten genes are included in the map and 11 markers have heterozygosities of at least 70%. This map is the first to incorporate several highly informative markers derived from a telomere YAC clone HTY146 (locus D7S427), including HTY146c3 (HET 92%). The telomere locus markers span at least 200 kb of the 7q terminus and no crossovers within the physical confines of the locus were observed in approximately 240 jointly informative meioses. The sex-equal map length is 158 cM and the largest genetic interval between uniquely localized markers in this map is 11 cM. The female and male map lengths are 181 and 133 cM, respectively. The map is based on the CEPH reference pedigrees and includes over 4000 new genotypes, our previously reported data plus 29 allele systems from the published CEPH version 5 database, and was constructed using the program package CRI-MAP. This genetic linkage map can be considered a baseline map for 7q, and will be useful for defining the extent of chromosome deletions previously reported for breast and prostate cancers, for developing additional genetic maps such as index marker and 1-cM maps, and ultimately for developing a fully integrated genetic and physical map for this chromosome.  相似文献   

17.
Recently two main genetic maps [Rohrer et al. Genetics 136, 231 (1994); Archibald et al. Mamm. Genome 6, 157 (1995)] and a cytogenetic map [Yerle et al. Mamm. Genome 6, 175 (1995)] for the porcine genome were reported. As only a very few microsatellites are located on the cytogenetic map, it appears to be important to increase the relationships between the genetic and cytogenetic maps. This document describes the regional mapping of 100 genetic markers with a somatic cell hybrid panel. Among the markers, 91 correspond to new localizations. Our study enabled the localization of 14 new markers found on both maps, of 54 found on the USDA map, and of 23 found on the PiGMaP map. Now 21% and 43% of the markers on the USDA and PiGMaP linkage maps respectively are physically mapped. This new cytogenetic information was then integrated within the framework of each genetic map. The cytogenetic orientation of the USDA linkage maps for Chromosomes (Chrs) 3, 8, 9, and 16 and of PiGMaP for Chr 8 was determined. USDA and PiGMaP linkage maps are now oriented for all chromosomes, except for Chrs 17 and 18. Moreover, the linkage group ``R' from the USDA linkage map was assigned to Chr 6. Received: 21 September 1995 / Accepted: 19 January 1996  相似文献   

18.
Hubert S  Hedgecock D 《Genetics》2004,168(1):351-362
We constructed male and female consensus linkage maps for the Pacific oyster Crassostrea gigas, using a total of 102 microsatellite DNA markers typed in 11-day-old larvae from three families. We identified 11 and 12 linkage groups in the male and female consensus maps, respectively. Alignment of these separate maps, however, suggests 10 linkage groups, which agrees with the haploid chromosome number. The male linkage map comprises 88 loci and spans 616.1 cM, while the female map comprises 86 loci and spans 770.5 cM. The male and the female maps share 74 loci; 2 markers remain unlinked. The estimated coverages for the consensus linkage maps are 79% for the male and 70-75% for the female, on the basis of two estimates of genome length. Ninety-five percent of the genome is expected to lie within 16 and 21 cM of markers on the male and female maps, respectively, while 95% of simulated minimum distances to the male and female maps are within 10.1 and 13.6 cM, respectively. Females have significantly more recombination than males, across 118 pairs of linked markers in common to the parents of the three families. Significant differences in recombination and orders of markers are also evident among same-sex parents of different families as well as sibling parents of opposite sex. These observations suggest that polymorphism for chromosomal rearrangements may exist in natural populations, which could have profound implications for interpreting the evolutionary genetics of the oyster. These are the first linkage maps for a bivalve mollusc that use microsatellite DNA markers, which should enable them to be transferred to other families and to be useful for further genetic analyses such as QTL mapping.  相似文献   

19.
A YAC contig map of Arabidopsis thaliana chromosome 3   总被引:1,自引:0,他引:1  
We have constructed a YAC contig map of Arabidopsis thaliana chromosome 3. From an estimated total size of 25 Mb, about 21 Mb were covered by 148 clones arranged into nine YAC contigs, which represented most of the low-copy regions of the chromosome. YAC clones were anchored with 259 molecular markers, including 111 for which linkage information was previously available. Most of the genetic map was included in the YAC coverage, and more than 60% of the genetic markers from the reference recombinant inbred line map were anchored, giving a high level of integration between the genetic and physical maps. The submetacentric structure of the chromosome was confirmed by physical data; 3R (the top arm of the linkage map) was about 12 Mb, and 3L (the bottom arm of the linkage map) was about 9 Mb. This YAC physical map will aid in chromosome walking experiments and provide a framework for large-scale DNA sequencing of chromosome 3.  相似文献   

20.
D. Grattapaglia  R. Sederoff 《Genetics》1994,137(4):1121-1137
We have used a ``two-way pseudo-testcross' mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many single-dose RAPD markers will be heterozygous in one parent, null in the other and therefore segregate 1:1 in their F(1) progeny following a testcross configuration. Meiosis and gametic segregation in each individual can be directly and efficiently analyzed using RAPD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, θ = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) (n = 11 in Eucalyptus). Framework maps ordered with a likelihood support >/=1000:1 were assembled covering 95% of the estimated genome size in both individuals. Characterization of genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage maps for any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexually reproducing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficient at the intraspecific level and increasingly so with crosses of genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps in any forest species opens the way for a shift from the paradigm of a species index map to the heterodox proposal of constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号