首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have solved the crystal and molecular structures of hepatitis A viral (HAV) 3C proteinase, a cysteine peptidase having a chymotrypsin-like protein fold, in complex with each of three tetrapeptidyl-based methyl ketone inhibitors to resolutions beyond 1.4 A, the highest resolution to date for a 3C or a 3C-Like (e.g. SARS viral main proteinase) peptidase. The residues of the beta-hairpin motif (residues 138-158), an extension of two beta-strands of the C-terminal beta-barrel of HAV 3C are critical for the interactions between the enzyme and the tetrapeptide portion of these inhibitors that are analogous to the residues at the P4 to P1 positions in the natural substrates of picornaviral 3C proteinases. Unexpectedly, the Sgamma of Cys172 forms two covalent bonds with each inhibitor, yielding an unusual episulfide cation (thiiranium ring) stabilized by a nearby oxyanion. This result suggests a mechanism of inactivation of 3C peptidases by methyl ketone inhibitors that is distinct from that occurring in the structurally related serine proteinases or in the papain-like cysteine peptidases. It also provides insight into the mechanisms underlying both the inactivation of HAV 3C by these inhibitors and on the proteolysis of natural substrates by this viral cysteine peptidase.  相似文献   

2.
Picornaviruses are small pathogen RNA viruses, like poliovirus, hepatitis A virus, rhinovirus, and others. They produce a large polyprotein, which is cleaved by virally encoded cysteine peptidases, picornains 2A and 3C. Picornain 3C represents an intermediate between the serine peptidase chymotrypsin and the cysteine peptidase papain. Its steric structure resembles chymotrypsin, but its nucleophile is a thiol instead of the hydroxyl group. The histidine is a general base catalyst in chymotrypsin but forms a thiolate-imidazolium ion pair in papain. The third member of the catalytic triad is an acid (Glu71) as in chymotrypsin rather than an amide found in papain. Transformation of poliovirus 3C peptidase into a serine peptidase results in lower activity by a factor of 430, but the activity extends toward higher pH with the more basic hydroxyl group. The decrease in activity is caused by the less ordered active site, as supported by the unfavorable entropy of activation. At 25 degrees C the specificity rate constant for the thiol enzyme approaches k(1), the rate constant for the formation of the enzyme-substrate complex, but k(2), the acylation constant, becomes predominant with the increase in temperature. In contrast, for the serine peptidase the specificity constant is less than k(1) over the entire temperature range, and the transition state is controlled by both k(1) and k(2). The acidic component of the catalytic triad is essential for activity, but its negative charge does not influence the ionization of the thiol group.  相似文献   

3.
Foot-and-mouth disease virus (FMDV) causes a widespread and economically devastating disease of domestic livestock. Although FMDV vaccines are available, political and technical problems associated with their use are driving a renewed search for alternative methods of disease control. The viral RNA genome is translated as a single polypeptide precursor that must be cleaved into functional proteins by virally encoded proteases. 10 of the 13 cleavages are performed by the highly conserved 3C protease (3C(pro)), making the enzyme an attractive target for antiviral drugs. We have developed a soluble, recombinant form of FMDV 3C(pro), determined the crystal structure to 1.9-angstroms resolution, and analyzed the cleavage specificity of the enzyme. The structure indicates that FMDV 3C(pro) adopts a chymotrypsin-like fold and possesses a Cys-His-Asp catalytic triad in a similar conformation to the Ser-His-Asp triad conserved in almost all serine proteases. This observation suggests that the dyad-based mechanisms proposed for this class of cysteine proteases need to be reassessed. Peptide cleavage assays revealed that the recognition sequence spans at least four residues either side of the scissile bond (P4-P4') and that FMDV 3C(pro) discriminates only weakly in favor of P1-Gln over P1-Glu, in contrast to other 3C(pro) enzymes that strongly favor P1-Gln. The relaxed specificity may be due to the unexpected absence in FMDV 3C(pro) of an extended beta-ribbon that folds over the substrate binding cleft in other picornavirus 3C(pro) structures. Collectively, these results establish a valuable framework for the development of FMDV 3C(pro) inhibitors.  相似文献   

4.
Type I signal peptidase: an overview   总被引:5,自引:0,他引:5  
The signal hypothesis suggests that proteins contain information within their amino acid sequences for protein targeting to the membrane. These distinct targeting sequences are cleaved by specific enzymes known as signal peptidases. There are various type of signal peptidases known such as type I, type II, and type IV. Type I signal peptidases are indispensable enzymes, which catalyze the cleavage of the amino-terminal signal-peptide sequences from preproteins, which are translocated across biological membranes. These enzymes belong to a novel group of serine proteases, which generally utilize a Ser-Lys or Ser-His catalytic dyad instead of the prototypical Ser-His-Asp triad. Despite having no distinct consensus sequence other than a commonly found 'Ala-X-Ala' motif preceding the cleavage site, signal sequences are recognized by type I signal peptidase with high fidelity. Type I signal peptidases have been found in bacteria, archaea, fungi, plants, and animals. In this review, I present an overview of bacterial type I signal peptidases and describe some of their properties in detail.  相似文献   

5.
The virally encoded 3C proteinases of picornaviruses process the polyprotein produced by the translation of polycistronic viral mRNA. The X-ray crystallographic structure of a catalytically active mutant of the hepatitis A virus (HAV) 3C proteinase (C24S) has been determined. Crystals of this mutant of HAV 3C are triclinic with unit cell dimensions a = 53.6 A, b = 53.5 A, c = 53.2 A, alpha = 99.1 degrees, beta = 129.0 degrees, and gamma = 103.3 degrees. There are two molecules of HAV 3C in the unit cell of this crystal form. The structure has been refined to an R factor of 0.211 (Rfree = 0.265) at 2.0-A resolution. Both molecules fold into the characteristic two-domain structure of the chymotrypsin-like serine proteinases. The active-site and substrate-binding regions are located in a surface groove between the two beta-barrel domains. The catalytic Cys 172 S(gamma) and His 44 N(epsilon2) are separated by 3.9 A; the oxyanion hole adopts the same conformation as that seen in the serine proteinases. The side chain of Asp 84, the residue expected to form the third member of the catalytic triad, is pointed away from the side chain of His 44 and is locked in an ion pair interaction with the epsilon-amino group of Lys 202. A water molecule is hydrogen bonded to His 44 N(delta1). The side-chain phenolic hydroxyl group of Tyr 143 is close to this water and to His 44 N(delta1) and may be negatively charged. The glutamine specificity for P1 residues of substrate cleavage sites is attributed to the presence of a highly conserved His 191 in the S1 pocket. A very unusual environment of two water molecules and a buried glutamate contribute to the imidazole tautomer believed to be important in the P1 specificity. HAV 3C proteinase has the conserved RNA recognition sequence KFRDI located in the interdomain connection loop on the side of the molecule diametrically opposite the proteolytic site. This segment of polypeptide is located between the N- and C-terminal helices, and its conformation results in the formation of a well-defined surface with a strongly charged electrostatic potential. Presumably, this surface of HAV 3C participates in the recognition of the 5' and 3' nontranslated regions of the RNA genome during viral replication.  相似文献   

6.
The proline iminopeptidase from Xanthomonas campestris pv. citri is a serine peptidase that catalyses the removal of N-terminal proline residues from peptides with high specificity. We have solved its three-dimensional structure by multiple isomorphous replacement and refined it to a crystallographic R-factor of 19.2% using X-ray data to 2.7 A resolution. The protein is folded into two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet flanked by two helices and the 11 N-terminal residues on one side, and by four helices on the other side. The smaller domain is placed on top of the larger domain and essentially consists of six helices. The active site, located at the end of a deep pocket at the interface between both domains, includes a catalytic triad of Ser110, Asp266 and His294. Cys269, located at the bottom of the active site very close to the catalytic triad, presumably accounts for the inhibition by thiol-specific reagents. The overall topology of this iminopeptidase is very similar to that of yeast serine carboxypeptidase. The striking secondary structure similarity to human lymphocytic prolyl oligopeptidase and dipeptidyl peptidase IV makes this proline iminopeptidase structure a suitable model for the three-dimensional structure of other peptidases of this family.  相似文献   

7.
The cDNA encoding BthaTL, a serine peptidase from the venom of the snake Bothrops alternatus, was cloned and sequenced. The deduced primary structure shows over 62% of identity with snake venom thrombin-like enzymes (SVTLEs), molecules with high substrate specificity toward different natural substrates. Indeed, a phylogenetic reconstruction by two different methods clustered this enzyme close to other SVTLEs. These enzymes generally affect the hemostatic system in several ways, and therefore are used as tools in pharmacology and clinical diagnosis. A three-dimensional model of BthaTL was built by homology modeling using TSV-PA (Trimeresurus stejnegeri venom plasminogen activator) crystal structure as template. BthaTL model showed that the typical catalytic triad conformation of serine peptidases was preserved. The calcium coordination ligands were absent or adopt an unfavorable conformation, preventing interactions with metals. On the other hand, the Asp97-Arg174 saline bridge of TSV-PA was not found and its specificity determinant Phe193 is replaced by a Gly in BthaTL. The substitution of essential residues in the neighborhoods of the catalytic site cleft of BthaTL indicates that these two proteins do not share the same enzymatic specificity, what means that BthaTL will probably not activate plasminogen. Such observations may be helpful in the understanding of the molecular mechanism for substrate specificity of these enzymes.  相似文献   

8.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

9.
GDP-D-mannose 4,6 dehydratase is the first enzyme in the de novo biosynthetic pathway of GDP-L-fucose, the activated form of L-fucose, a monosaccharide found in organisms ranging from bacteria to mammals. We determined the three-dimensional structure of GDP-D-mannose 4,6 dehydratase from the Paramecium bursaria Chlorella virus at 3.8A resolution. Unlike other viruses that use the host protein machinery to glycosylate their proteins, P. bursaria Chlorella virus modifies its structural proteins using many glycosyltransferases, being the first virus known to encode enzymes involved in sugar metabolism. P. bursaria Chlorella virus GDP-D-mannose 4,6 dehydratase belongs to the short-chain dehydrogenase/reductase protein superfamily. Accordingly, the family fold and the specific Thr, Tyr, and Lys catalytic triad are well conserved in the viral enzyme.  相似文献   

10.
Candida albicans expresses a vast number of hydrolytic enzymes, playing roles in several phases of yeast-host interactions. Here, we identified two novel extracellular peptidase classes in C. albicans. Using gelatin-sodium dodecyl sulfate polyacrylamide gel electrophoresis two gelatinolytic activities were detected at physiological pH: a 60-kDa metallopeptidase, completely blocked by 1,10-phenanthroline, and a 50-kDa serine peptidase inhibited by phenylmethylsulfonyl fluoride. In an effort to establish a probable functional implication for these novel peptidase classes, we demonstrated that the 50-kDa secretory serine peptidase was active over a broad pH range (5.0-7.2) and was capable to hydrolyze some soluble human serum proteins and extracellular matrix components. Conversely, when this isolate was grown in yeast carbon base supplemented with bovine serum albumin, a secretory aspartyl peptidase activity was measured, instead of metallo- and serine peptidases, suggesting that distinct medium composition induces different expression of released peptidases in C. albicans. Additionally, we showed by quantitative proteolytic measurement, flow cytometry and immunoblotting assays that the brain heart infusion medium might repress the Sap1-3 production. Collectively, our results showed for the first time the capability of an extracellular proteolytic enzyme other than aspartic-type peptidases to cleave a broad spectrum of relevant host proteinaceous substrates by the human pathogen C. albicans.  相似文献   

11.
Many type I signal peptidases from eubacterial cells appear to contain a serine/lysine catalytic dyad. In contrast, our data show that the signal peptidase complex from the endoplasmic reticulum lacks an apparent catalytic lysine. Instead, a serine, histidine, and two aspartic acids are important for signal peptidase activity by the Sec11p subunit of the yeast signal peptidase complex. Amino acids critical to the eubacterial signal peptidases and Sec11p are, however, positioned similarly along their primary sequences, suggesting the presence of a common structural element(s) near the catalytic sites of these enzymes.  相似文献   

12.
The alpha/beta hydrolase fold.   总被引:21,自引:0,他引:21  
We have identified a new protein fold--the alpha/beta hydrolase fold--that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta sheet, not barrel, of eight beta-sheets connected by alpha-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the alpha/beta hydrolase fold enzymes.  相似文献   

13.
Type I signal peptidases are integral membrane proteins that function to remove signal peptides from secreted and membrane proteins. These enzymes carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. Site-directed scanning mutagenesis was used to obtain a qualitative assessment of which residues in the fifth conserved region, Box E, of the Escherichia coli signal peptidase I are critical for maintaining a functional enzyme. First, we find that there is no requirement for activity for a salt bridge between the invariant Asp-273 and the Arg-146 residues. In addition, we show that the conserved Ser-278 is required for optimal activity as well as conserved salt bridge partners Asp-280 and Arg-282. Finally, Gly-272 is essential for signal peptidase I activity, consistent with it being located within van der Waals proximity to Ser-278 and general base Lys-145 side-chain atoms. We propose that replacement of the hydrogen side chain of Gly-272 with a methyl group results in steric crowding, perturbation of the active site conformation, and specifically, disruption of the Ser-90/Lys-145 hydrogen bond. A refined model is proposed for the catalytic dyad mechanism of signal peptidase I in which the general base Lys-145 is positioned by Ser-278, which in turn is held in place by Asp-280.  相似文献   

14.
Sedolisins (serine-carboxyl peptidases) are proteolytic enzymes whose fold resembles that of subtilisin; however, they are considerably larger, with the mature catalytic domains containing approximately 375 amino acids. The defining features of these enzymes are a unique catalytic triad, Ser-Glu-Asp, as well as the presence of an aspartic acid residue in the oxyanion hole. High-resolution crystal structures have now been solved for sedolisin from Pseudomonas sp. 101, as well as for kumamolisin from a thermophilic bacterium, Bacillus novo sp. MN-32. The availability of these crystal structures enabled us to model the structure of mammalian CLN2, an enzyme which, when mutated in humans, leads to a fatal neurodegenerative disease. This review compares the structural and enzymatic properties of this newly defined MEROPS family of peptidases, S53, and introduces their new nomenclature.  相似文献   

15.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

16.
The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.  相似文献   

17.
A family of hypothetical proteins, identified predominantly from archaeal genomes, has been analyzed in order to understand its functional characteristics. Using extensive sequence similarity searches it is inferred that this family is remotely related (best sequence identity is 19%) to ClpP proteinases that belongs to serine proteinase class. This family of hypothetical proteins is referred to as SDH proteinase family based on conserved sequential order of Ser, Asp and His residues and predicted serine proteinase activity. Results of fold recognition of SDH family sequences confirmed the remote relationship between SDH proteinases and Clp proteinases and revealed similar tertiary location of putative catalytic triad residues critical for serine proteinase function. However, the best sequence alignment we could obtain suggests that while catalytic Ser is conserved across Clp and SDH proteinases the location of the other catalytic triad residues, namely, His and Asp are swapped in their amino acid alignment positions and hence in 3-D structure. The evidence of conserved catalytic triad suggests that SDH could be a new family of serine proteinases with the fold of Clp proteinase, however sharing the catalytic triad order of carboxypeptidase clan. Signal peptide sequence identified at the N-terminus of some of the homologues suggests that these might be secretory serine proteinases involved in cleavage of extracellular proteins while the remote homologues, ClpP proteinases, are known to work in intracellular environment.  相似文献   

18.
Few structures of viral serine proteases, those encoded by the Sindbis and Semliki Forest viruses, hepatitis C virus (HCV) and cytomegalovirus, have been reported. In the life cycle of HCV a crucial role is played by a chymotrypsin-like serine protease encoded at the N-terminus of the viral NS3 protein, the solution structure of which we present here complexed with a covalently bound reversible inhibitor. Unexpectedly, the residue in the P2 position of the inhibitor induces an effective stabilization of the catalytic His-Asp hydrogen bond, by shielding that region of the protease from the solvent. This interaction appears crucial in the activation of the enzyme catalytic machinery and represents an unprecedented observation for this family of enzymes. Our data suggest that natural substrates of this serine protease could contribute to the enzyme activation by a similar induced-fit mechanism. The high degree of similarity at the His-Asp catalytic site region between HCV NS3 and other viral serine proteases suggests that this behaviour could be a more general feature for this category of viral enzymes.  相似文献   

19.
LAS enzymes are a group of metallopeptidases that share an active site architecture and a core folding motif and have been named according to the group members lysostaphin, D-Ala-D-Ala carboxypeptidase and sonic hedgehog. Escherichia coli MepA is a periplasmic, penicillin-insensitive murein endopeptidase that cleaves the D-alanyl-meso-2,6-diamino-pimelyl amide bond in E. coli peptidoglycan. The enzyme lacks sequence similarity with other peptidases, and is currently classified as a peptidase of unknown fold and catalytic class in all major data bases. Here, we build on our observation that two motifs, characteristic of the newly described LAS group of metallopeptidases, are conserved in MepA-type sequences. We demonstrate that recombinant E. coli MepA is sensitive to metal chelators and that mutations in the predicted Zn2+ ligands His-113, Asp-120, and His-211 inactivate the enzyme. Moreover, we present the crystal structure of MepA. The active site of the enzyme is most similar to the active sites of lysostaphin and D-Ala-D-Ala carboxypeptidase, and the fold is most closely related to the N-domain of sonic hedgehog. We conclude that MepA-type peptidases are LAS enzymes.  相似文献   

20.
From the soluble and membrane fractions of rat brain homogenate, two enzymes that liberate dipeptides of the type Xaa-Pro from chromogenic substrates were purified to homogeneity. The two isolated dipeptidyl peptidases had similar molecular and catalytic properties: For the native proteins, molecular weights of 110,000 were estimated; for the denatured proteins, the estimate was 52,500. Whereas the soluble peptidase yielded one band of pI 4.2 after analytical isoelectric focusing, two additional enzymatic active bands were detected between pI 4.2 and 4.3 for the membrane-associated form. As judged from identical patterns after neuraminidase treatment, both peptidases contained no sialic acid. A pH optimum of 5.5 was estimated for the hydrolysis of Gly-Pro- and Arg-Pro-nitroanilide. Substrates with alanine instead of proline in the penultimate position were hydrolyzed at comparable rates. Acidic amino acids in the ultimate N-terminal position of the substrates reduced the activities of the peptidases 100-fold as compared with corresponding substrates with unblocked neutral or, especially, basic termini. The action of the dipeptidyl peptidase on several peptides with N-terminal Xaa-Pro sequences was investigated. Tripeptides were rapidly hydrolyzed, but the activities considerably decreased with increasing chain length of the peptides. Although the tetrapeptide substance P 1-4 was still a good substrate, the activities detected for the sequential liberation of Xaa-Pro dipeptides from substance P itself or casomorphin were considerably lower. Longer peptides were not cleaved. The peptidases hydrolyzed Pro-Pro bonds, e.g., in bradykinin 1-3 or 1-5 fragments, but bradykinin itself was resistant. The enzymes were inhibited by serine protease inhibitors, like diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride, and by high salt concentrations but not by the aminopeptidase inhibitors bacitracin and bestatin. Based on the molecular and catalytic properties, both enzymes can be classified as species of dipeptidyl peptidase II (EC 3.4.14.2) rather than IV (EC 3.4.14.5). However, some catalytic properties differentiate the brain enzyme from forms of dipeptidyl peptidase II of other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号