首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 127 毫秒
1.
Recombinational DNA repair and human disease   总被引:27,自引:0,他引:27  
  相似文献   

2.
The Mre11 complex and ATM: collaborating to navigate S phase   总被引:29,自引:0,他引:29  
Recently, findings regarding a group of cancer predisposition and chromosome instability syndromes, Nijmegen breakage syndrome (NBS), the ataxia-telangiectasia-like disorder (A-TLD) and ataxia telangiectasia have shed light on the unexpected role of recombinational DNA repair proteins in DNA-damage-dependent cell-cycle regulation. Mutations in the Mre11 complex cause A-TLD and NBS. In addition, functions of the Mre11 complex have been biochemically linked to ATM, the large protein kinase that is defective in ataxia-telangiectasia cells by the observation that Nbs1 is a bona fide substrate of the ATM kinase.  相似文献   

3.
A new approach to cancer and new methods in examining rare human chromosome breakage syndromes have brought to light complex interactions between different pathways involved in damage response, cell cycle checkpoint control and DNA repair. The genes affected in these different syndromes are involved in networks of processes that respond to DNA damage and prevent chromosomal aberrations during the cell cycle. The genes involved include the ATM, ATR, FA-associated genes, NBS1 and the cancer susceptibility genes BRCA1 and BRCA2. Chromosomal instability is a common feature of many human cancers and most of the instability syndromes, characterized by sensitivity to different types of DNA damage, also show increased cancer susceptibility. Better understanding of these syndromes and their links with familial cancer provide new insight into associations between defects in DNA damage response, cell cycle control, DNA repair and cancer. Understanding the damage response repair networks that these studies are revealing will have important implications for the development of cancer management and treatment.  相似文献   

4.
Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation, chromosome instability and high frequency of malignancies. Since cellular features partly overlap with those of ataxia-telangiectasia (A-T), NBS was long considered an A-T clinical variant. NBS1, the product of the gene underlying the disease, contains three functional regions: the forkhead-associated (FHA) domain and BRCA1 C-terminus (BRCT) domain at the N-terminus, several SQ motifs (consensus phosphorylation sites by ATM and ATR kinases) at a central region and MRE11-binding region at the C-terminus. NBS1 forms a multimeric complex with hMRE11/hRAD50 nuclease at the C-terminus and recruits or retains them at the vicinity of sites of DNA damage by direct binding to histone H2AX, which is phosphorylated by ATM in response to DNA damage. The combination of the FHA/BRCT domains has a crucial role for the binding of NBS1 to H2AX. Thereafter, the NBS1 complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates, while it also might be involved in suppression of inter-chromosomal recombination even for V(D)J recombination. These processes collaborate with cell cycle checkpoints to facilitate DNA repair, while defects of these checkpoints in NBS cells are partial in nature. A possible explanation for these moderate defects are the redundancy of multiple checkpoint regulations in vertebrates, or the modulator role of NBS1, in which NBS1 amplifies ATM activation by accumulation of the MRN complex at damaged sites. This molecular link of NBS1 to ATM may explain the phenotypic similarity of NBS to A-T.  相似文献   

5.
SIRT1 regulates the function of the Nijmegen breakage syndrome protein   总被引:5,自引:0,他引:5  
MRE11-RAD50-NBS1 (MRN) is a conserved nuclease complex that exhibits properties of a DNA damage sensor and is critical in regulating cellular responses to DNA double-strand breaks. NBS1, which is mutated in the human genetic disease Nijmegen breakage syndrome, serves as the regulatory subunit of MRN. Phosphorylation of NBS1 by the ATM kinase is necessary for both activation of the S phase checkpoint and for efficient DNA damage repair response. Here, we report that NBS1 is an acetylated protein and that the acetylation level is tightly regulated by the SIRT1 deacetylase. SIRT1 associates with the MRN complex and, importantly, maintains NBS1 in a hypoacetylated state, which is required for ionizing radiation-induced NBS1 Ser343 phosphorylation. Our results demonstrate the presence of crosstalk between two different posttranslational modifications in NBS1 and strongly suggest that deacetylation of NBS1 by SIRT1 plays a key role in the dynamic regulation of the DNA damage response and in the maintenance of genomic stability.  相似文献   

6.
The present report deals with the functional relationships among protein complexes which, when mutated, are responsible for four human syndromes displaying cancer proneness, and whose cells are deficient in DNA double-strand break (DSB) repair. In some of them, the cells are also unable to activate the proper checkpoint, while in the others an unduly override of the checkpoint-induced arrest occurs. As a consequence, all these patients display genome instability. In ataxia-telangiectasia, the mutated protein (ATM) is a kinase, which acts as a transducer of DNA damage signalling. The defective protein in the ataxia-telangiectasia-like disorder is a DNase (the Mre11 nuclease) that in vivo produces single-strand tails at both sides of DSBs. Mre11 is always present with the Rad50 ATPase in a protein machine: the nuclease complex. In mammals, this complex also contains nibrin, the protein mutated in the Nijmegen syndrome. Nibrin confers new abilities to the nuclease complex, and can also bind to BRCA1 (one of the two proteins mutated in familial breast cancer). BRCA1 has a central motif that binds with high affinity to cruciform DNA, a structure present in places where the DNA loops are anchored to the chromosomal axis or scaffold. The BRCA1 x cruciform DNA complex should be released to allow the nuclease complex to work in DNA recombinational repair of DSBs. BRCA1 also acts as a scaffold for the assembly of ATPases such as Rad51, responsible for the somatic homologous recombination. Loss of the BRCA1 gene prevents cell survival after exposure to cross-linkers. The BRCA1-RING domain is an E3-ubiquitin ligase. It can mono-ubiquitinate the FANCD2 protein, mutated in one of the Fanconi anemia complementation groups, to regulate it. Finally, during DNA replication, the nuclease complex and its activating ATM kinase are integrated in the BRCA1-associated surveillance complex (BASC) that contains, among others, enzymes required for mismatch excision repair. In short, the proteins missing in these syndromes have in common their BRCA1-mediated assembly into multimeric machines responsible for the surveillance of DNA replication, DSB recombinational repair, and the removal of DNA cross-links.  相似文献   

7.
Nijmegen breakage syndrome (NBS) is an autosomal genetic disease demonstrating a variety of phenotypic abnormalities, including premature aging, increased cancer incidence, chromosome instability, and sensitivity to ionizing radiation. The gene involved in NBS, NBS1, is part of the MRE11/RAD50/NBS1 (MRN) complex that also includes MRE11 and RAD50, which is involved in DNA repair and cell cycle regulation in response to DNA damage. The MRN complex is also involved in telomere maintenance, as demonstrated by the shortened telomeres in NBS primary human fibroblasts and the association of NBS1 with the telomere-binding protein TRF2. To learn more about how a deficiency in telomere maintenance might contribute to chromosome instability in NBS, we have investigated the stability of telomeres in two telomerase-positive human tumor cell clones, BNmt-On and BNmt-Off, expressing an inducible NBS1(S278A/S343A) gene containing mutations at serines 278 and 343 phosphorylated by ATM. The results demonstrate an increased rate of telomere loss in both clones following expression of NBS1(S278A/S343A). The absence of detectable changes in average telomere length suggests that NBS1-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. The recombination events associated with telomere loss were found to be similar to those shown previously to result in breakage/fusion/bridge cycles, suggesting that telomere loss can contribute to chromosome instability in NBS1-deficient cells. Telomere loss showed no correlation with radiosensitivity or radioresistant DNA synthesis, demonstrating that NBS1(S278A/S343A) promotes telomere loss through a separate pathway from these other phenotypes associated with NBS.  相似文献   

8.
The Fanconi anemia pathway and the DNA interstrand cross-links repair   总被引:4,自引:0,他引:4  
Rosselli F  Briot D  Pichierri P 《Biochimie》2003,85(11):1175-1184
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.  相似文献   

9.
As recently as six years ago, three human diseases with similar phenotypes were mistakenly believed to be caused by a single genetic defect. The three diseases, Ataxia-telangiectasia, Nijmegen breakage syndrome, and an AT-like disorder are now known, however, to have defects in three separate genes: ATM, NBS1, and MRE11. Furthermore, new recent studies have shown now that all three gene products interact; the ATM kinase phosphorylates NBS1, which, in turn, associates with MRE11 to regulate DNA repair. Remarkably or expectedly, depending on one's point of view, the similarity in disease phenotypes is evidently due to defects in a common DNA repair pathway.  相似文献   

10.
Requirement of the MRN complex for ATM activation by DNA damage   总被引:34,自引:0,他引:34       下载免费PDF全文
The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号