首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
2.
Nonsense-mediated messenger RNA decay (NMD) generally degrades mRNAs that prematurely terminate translation as a means of quality control. NMD in mammalian cells targets newly spliced mRNA that is bound by the cap-binding protein heterodimer CBP80/20 and one or more post-splicing exon junction complexes during a pioneer round of translation. NMD targets mRNA that initiates translation using the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES), therefore NMD might target not only CBP80/20-bound mRNA but also its remodelled product, eIF4E-bound mRNA. Here, we provide evidence that NMD triggered by translation initiation at the EMCV IRES, similar to NMD triggered by translation initiation at an mRNA cap, targets CBP80/20-bound mRNA but does not detectably target eIF4E-bound mRNA. We show that EMCV IRES-initiated translation undergoes a CBP80/20-associated pioneer round of translation that results in CBP80/20-dependent and Upf factor-dependent NMD when translation terminates prematurely.  相似文献   

3.
4.
In mammalian cells, nonsense-mediated messenger RNA decay (NMD) targets newly synthesized nonsense-containing mRNA bound by the cap-binding-protein heterodimer CBP80-CBP20 and at least one exon-junction complex (EJC). An EJC includes the NMD factors Upf3 or Upf3X and Upf2, and Upf2 recruits Upf1. Once this pioneer translation initiation complex is remodeled so that CBP80-CBP20 is replaced by eukaryotic initiation factor 4E, the mRNA is no longer detectably targeted for NMD. Here, we provide evidence that CBP80 augments the efficiency of NMD but not of Staufen1 (Stau1)-mediated mRNA decay (SMD). SMD depends on the recruitment of Upf1 by the RNA-binding protein Stau1 but does not depend on the other Upf proteins. We find that CBP80 interacts with Upf1 and promotes the interaction of Upf1 with Upf2 but not with Stau1.  相似文献   

5.
The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons.  相似文献   

6.
Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism; this process removes faulty mRNAs harboring premature termination codons (PTCs). NMD targets newly synthesized mRNAs bound by nuclear cap-binding proteins 80/20 (CBP80/20) and exon junction complex (EJC), the former of which is thought to recruit the ribosome to initiate the pioneer round of translation. After completion of the pioneer round of translation, CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E, which mediates steady-state translation in the cytoplasm. Here, we show that overexpression of eIF4E-T preferentially inhibits cap-dependent steady-state translation, but not the pioneer round of translation. We also demonstrate that overexpression of eIF4E-T or Dcp1a triggers the movement of eIF4E into the processing bodies. These results suggest that the pioneer round of translation differs from steady-state translation in terms of ribosome recruitment.  相似文献   

7.
Nonsense-mediated mRNA decay (NMD) generally eliminates messenger RNAs that prematurely terminate translation and occurs in all eukaryotes that have been studied, although with mechanistic variations. In mammals, NMD seems to be restricted to newly synthesized mRNA that is bound by the cap-binding heterodimer CBP80-CBP20 (CBP80/20) and typically has at least one exon junction complex (EJC) situated downstream of the nonsense codon and added post-splicing. However, mammalian NMD can also target spliced mRNA lacking an EJC downstream of the nonsense codon. Here we provide evidence that this additional pathway, known as failsafe NMD, likewise seems to be restricted to CBP80/20-bound mRNA and does not detectably target its subsequently remodeled product, eIF4E-bound mRNA. Our studies, including analyses of factor dependence, reveal important shared features of the two mammalian-cell NMD pathways as well as fundamental differences between NMD in mammals and Saccharomyces cerevisiae.  相似文献   

8.
In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.  相似文献   

9.
Marintchev A  Wagner G 《Biochemistry》2005,44(37):12265-12272
Eukaryotic translation initiation factor 4G (eIF4G) plays a critical role in protein expression, and is at the center of a complex regulatory network. Together with the cap-binding protein eIF4E, it recruits the small ribosomal subunit to the 5'-end of mRNA and promotes the assembly of a functional translation initiation complex, which scans along the mRNA to the translation start codon. Human eIF4G contains three consecutive HEAT domains, as well as long unstructured regions involved in multiple protein-protein interactions. Despite the accumulating data about the structure and function of eIF4G, the mechanisms of coordination and regulation of its interactions with other factors have remained largely unknown. Here, we present evidence that eIF4G and the large subunit of the nuclear cap-binding complex, CBP80, share a common origin and domain structure. We propose that the organization of the individual domains in eIF4G and CBP80 could also be conserved. The structure of CBP80, in complex with the nuclear cap-binding protein CBP20, is used to build a model for the mutual orientation of the domains in eIF4G and their interactions with other factors. The organization of the CBP80-CBP20 complex suggests how the activity of eIF4G in translation initiation could be regulated through a dynamic network of overlapping intra- and intermolecular interactions centered around the eIF4G HEAT domains.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号