首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling   总被引:14,自引:0,他引:14  
Using a transgenic line that overexpresses a fusion of the KNAT2 (KNOTTED-like Arabidopsis) homeodomain protein and the hormone-binding domain of the glucocorticoid receptor (GR), we have investigated the possible relations between KNAT2 and various hormones. Upon activation of the KNAT2-GR fusion, we observed a delayed senescence of the leaves and a higher rate of shoot initiation, two processes that are also induced by cytokinins and inhibited by ethylene. Furthermore, the activation of the KNAT2-GR fusion induced lobing of the leaves. This feature was partially suppressed by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, or by the constitutive ethylene response ctr1 mutation. Conversely, some phenotypic traits of the ctr1 mutant were suppressed by the activation of the KNAT2-GR fusion. These data suggest that KNAT2 acts synergistically with cytokinins and antagonistically with ethylene. In the shoot apical meristem, the KNAT2 gene is expressed in the L3 layer and the rib zone. 1-Aminocyclopropane-1-carboxylic acid treatment restricted the KNAT2 expression domain in the shoot apical meristem and reduced the number of cells in the L3. The latter effect was suppressed by the activation of the KNAT2-GR construct. Conversely, the KNAT2 gene expression domain was enlarged in the ethylene-resistant etr1-1 mutant or in response to cytokinin treatment. These data suggest that ethylene and cytokinins act antagonistically in the meristem via KNAT2 to regulate the meristem activity.  相似文献   

2.
Yang S  Yu H  Xu Y  Goh CJ 《FEBS letters》2003,555(2):291-296
The plant hormone cytokinin plays a major role in regulating plant growth and development. Here we generated cytokinin-reduction Arabidopsis plants by overexpressing a heterologous cytokinin oxidase gene DSCKX1 from Dendrobium orchid. These transgenic plants exhibited reduced biomass, rapid root growth, decreased ability to form roots in vitro, and reduced response to cytokinin in growing calli and roots. Furthermore, the expression of KNAT1, STM, and CycD3 genes was significantly reduced in the transgenic plants, suggesting that cytokinin may function to control the cell cycles and shoot/root development via regulation of these genes.  相似文献   

3.
4.
5.
Cytokinins are adenine derivatives that regulate numerous plant growth and developmental processes, including apical and floral meristem development, stem growth, leaf senescence, apical dominance, and stress tolerance. However, not much is known about how cytokinin biosynthesis and metabolism is regulated. We identified a novel Arabidopsis gene, ALL, encoding an aldolase-like enzyme that regulates cytokinin signaling. An Arabidopsis mutant, all-1D, in which ALL is activated by the nearby insertion of the 35S enhancer, exhibited extreme dwarfism with rolled, dark-green leaves and reduced apical dominance, symptomatic of cytokinin-overproducing mutants. Consistent with this, ARR4 and ARR5, two representative primary cytokinin-responsive genes, were significantly induced in all-1D. Whereas SHOOT MERISTEMLESS (STM) and KNAT1, which regulate meristem development, were also greatly induced, expression of REV and PHV that regulate lateral organ polarity was inhibited. ALL encodes an aldolase-like enzyme that belongs to the HpcH/HpaI aldolase family in prokaryotes and is down-regulated by exogenous cytokinin, possibly through a negative feedback pathway. We propose that ALL is involved in cytokinin biosynthesis or metabolism and acts as a positive regulator of cytokinin signaling during shoot apical meristem development and determination of lateral organ polarity.  相似文献   

6.
PASTICCINO (PAS) genes are required for coordinated cell division and differentiation during plant development. In loss-of-function pas mutants, plant aerial tissues showed ectopic cell division that was specifically enhanced by cytokinins, leading to disorganized tumor-like tissue. To determine the role of the PAS genes in controlling cell proliferation, we first analyzed the expression profiles of several genes involved in cell division and meristem function. Differentiated and meristematic cells of the pas mutants were more competent for cell division as illustrated by the ectopic and enlarged expression profiles of CYCLIN-DEPENDENT KINASE A and CYCLIN B1. The expression of meristematic homeobox genes KNOTTED-LIKE IN ARABIDOPSIS (KNAT2, KNAT6), and SHOOT MERISTEMLESS was also increased in pas mutants. Moreover, the loss of meristem function caused by shoot meristemless mutation can be suppressed by pas2. The KNAT2 expression pattern defines an enlarged meristematic zone in pas mutants that can be mimicked in wild type by cytokinin treatment. Cytokinin induction of the primary cytokinin response markers, ARABIDOPSIS RESPONSE REGULATOR (ARR5 and ARR6), was enhanced and lasted longer in pas mutants, suggesting that PAS genes in wild type repress cytokinin responses. The expression of the cytokinin-regulated cyclin D, cyclin D3.1, was nonetheless not modified in pas mutants. However, primary auxin response genes were down-regulated in pas mutants, as shown by a lower auxin induction of IAA4 and IAA1 genes, demonstrating that the auxin response was also modified. Altogether, our results suggest that PAS genes are involved in the hormonal control of cell division and differentiation.  相似文献   

7.
Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.  相似文献   

8.
Arabidopsis KNOXI proteins activate cytokinin biosynthesis   总被引:1,自引:0,他引:1  
Plant architecture is shaped through the continuous formation of organs by meristems. Class I KNOTTED1-like homeobox (KNOXI) genes are expressed in the shoot apical meristem (SAM) and are required for SAM maintenance. KNOXI proteins and cytokinin, a plant hormone intimately associated with the regulation of cell division, share overlapping roles, such as meristem maintenance and repression of senescence, but their mechanistic and hierarchical relationship have yet to be defined. Here, we show that activation of three different KNOXI proteins using an inducible system resulted in a rapid increase in mRNA levels of the cytokinin biosynthesis gene isopentenyl transferase 7 (AtIPT7) and in the activation of ARR5, a cytokinin response factor. We further demonstrate a rapid and dramatic increase in cytokinin levels following activation of the KNOXI protein SHOOT MERISTEMLESS (STM). Application of exogenous cytokinin or expression of a cytokinin biosynthesis gene through the STM promoter partially rescued the stm mutant. We conclude that activation of cytokinin biosynthesis mediates KNOXI function in meristem maintenance. KNOXI proteins emerge as central regulators of hormone levels in plant meristems.  相似文献   

9.
Leaves are specialized organs characterized by defined developmental destiny and determinate growth. The overexpression of Knotted1-like homeobox genes in different species has been shown to alter leaf shape and development, but a definite role for this class of genes remains to be established. Transgenics that overexpress Knotted1-like genes present some traits that are characteristic of altered cytokinin physiology. Here we show that lettuce (Lactuca sativa) leaves that overexpress KNAT1, an Arabidopsis kn1-like gene, acquire characteristics of indeterminate growth typical of the shoot and that this cell fate change is associated with the accumulation of specific types of cytokinins. The possibility that the phenotypic effects of KNAT1 overexpression may arise primarily from the modulation of local ratios of different cytokinins is discussed.  相似文献   

10.
11.
The homeobox gene family plays a crucial role during the development of multicellular organisms. The KNOTTED-like genes from Arabidopsis thaliana (KNAT6 and KNAT2) are close relatives of the meristematic genes SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS, but their function is not currently known. To investigate their role, we identified null alleles of KNAT6 and KNAT2. We demonstrate that KNAT6 contributes redundantly with STM to the maintenance of the shoot apical meristem (SAM) and organ separation. Consistent with this role, the expression domain of KNAT6 in the SAM marks the boundaries between the SAM and cotyledons. The lack of meristematic activity in the knat6 stm-2 double mutant and the fusion of cotyledons were linked to the modulation of CUP-SHAPED COTYLEDON (CUC) activity. During embryogenesis, KNAT6 is expressed later than STM and CUC. In agreement with this fact, CUC1 and CUC2 were redundantly required for KNAT6 expression. These data provide the basis for a model in which KNAT6 contributes to SAM maintenance and boundary establishment in the embryo via the STM/CUC pathway. KNAT2, although the closest related member of the family to KNAT6, did not have such a function.  相似文献   

12.
Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (beta-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions.  相似文献   

13.
Recent breakthroughs in cytokinin research have shed new light on the role of cytokinin in plant development. Loss-of-function mutants of a cytokinin receptor reveal a role for the hormone in establishment of the vasculature during embryonic development. Cytokinin controls the number of early cell divisions via a two-component signaling system. Genetically engineered plants that have a reduced cytokinin content demonstrate the regulatory role of the hormone in control of meristem activity and organ growth during postembryonic development, with opposite roles in roots and shoots. There is increasing evidence from work with transgenic plants and mutant analysis that cytokinins do not perform the previously proposed function as a root-derived signal for the regulation of shoot branching. Root-borne cytokinins might serve as a long-range signal controling other processes at distant sites, such as responding to nutritional status, particularly nitrogen availability.  相似文献   

14.
Mechanisms that control knox gene expression in the Arabidopsis shoot   总被引:20,自引:0,他引:20  
Knotted1-like homeobox (knox) genes are expressed in specific patterns within shoot meristems and play an important role in meristem maintenance. Misexpression of the knox genes, KNAT1 or KNAT2, in Arabidopsis produces a variety of phenotypes, including lobed leaves and ectopic stipules and meristems in the sinus, the region between lobes. We sought to determine the mechanisms that control knox gene expression in the shoot by examining recessive mutants that share phenotypic characteristics with 35S::KNAT1 plants. Double mutants of serrate (se) with either asymmetric1 (as1) or asymmetric2 (as2) showed lobed leaves, ectopic stipules in the sinuses and defects in the timely elongation of sepals, petals and stamens, similar to 35S::KNAT1 plants. Ectopic stipules and in rare cases, ectopic meristems, were detected in the sinuses on plants that were mutant for pickle and either as1 or as2. KNAT1 and KNAT2 were misexpressed in the leaves and flowers of single as1 and as2 mutants and in the sinuses of leaves of the different double mutants, but not in se or pickle single mutants. These results suggest that AS1 and AS2 promote leaf differentiation through repression of knox expression in leaves, and that SE and PKL globally restrict the competence to respond to genes that promote morphogenesis.  相似文献   

15.
A novel Arabidopsis thaliana mutant, named hoc, was found to have an high organogenic capacity for shoot regeneration. The HOC locus may be involved in cytokinin metabolism leading to cytokinin-overproduction. In vitro, hoc root explants develop many shoots in the absence of exogenous growth regulators. The mutant displays a bushy phenotype with supernumerary rosettes and with normal phyllotaxy, resulting from precocious axillary meristem development. Genetic and molecular analyses show that the high shoot regeneration and the bushy phenotype are controlled by a recessive single gene, located on chromosome I, next to the GAPB CAPS marker. The mapping data and allelism tests reveal that the hoc mutant is not allelic to other reported Arabidopsis growth-regulator mutants. In darkness the hoc mutant is de-etiolated, with a short hypocotyl, opened cotyledons and true leaves. Growth regulator assays reveal that the mutant accumulates cytokinins at about two- and sevenfold the cytokinin level of wild-type plants in its aerial parts and roots, respectively. Consequently, the elevated amounts of endogenous cytokinins in hoc plants are associated with high organogenic capacity and hence bushy phenotype. Thus hoc is the first cytokinin-overproducing Arabidopsis mutant capable of auto-regenerating shoots without exogenous growth regulators.  相似文献   

16.
The dependence of cytokinin accumulation in the shoot apexes of Arabidopsis plants on the delivery of these hormones from the roots was studied. For the estimation of cytokinin content in the cells, the immunohistochemical localization method using antibodies against zeatin riboside was used. Differential conjugation of free cytokinin bases and their ribosides was used to prevent washing of cytokinins during the dehydration process. Root cutting decreased the immunostaining of zeatin in the cells of the shoot apical meristem, thereby supporting the hypothesis about dependence of cytokinin accumulation in these cells on the hormone delivery from the roots. The level of cytokinins in the cells of the shoot apex decreased under the effect of protonophore, indicating the important role of the secondary-active transmembrane transport process of cytokinins in the maintenance of their level in the cells of the shoot apex.  相似文献   

17.
18.
G Chuck  C Lincoln    S Hake 《The Plant cell》1996,8(8):1277-1289
Plant development depends on the activity of apical meristems, which are groups of indeterminate cells whose derivatives elaborate the organs of the mature plant. Studies of knotted1 (kn1) and related gene family members have determined potential roles for homeobox genes in the function of shoot meristems. The Arabidopsis kn1-like gene, KNAT1, is expressed in the shoot apical meristem and not in determinate organs. Here, we show that ectopic expression of KNAT1 in Arabidopsis transforms simple leaves into lobed leaves. The lobes initiate in the position of serrations yet have features of leaves, such as stipules, which form in the sinus, the region at the base of two lobes. Ectopic meristems also arise in the sinus region close to veins. Identity of the meristem, that is, vegetative or floral, depends on whether the meristem develops on a rosette or cauline leaf, respectively. Using in situ hybridization, we analyzed the expression of KNAT1 and another kn1-like homeobox gene, SHOOT MERISTEMLESS, in cauliflower mosaic virus 35S::KNAT1 transformants. KNAT1 expression is strong in vasculature, possibly explaining the proximity of the ectopic meristems to veins. After leaf cells have formed a layered meristem, SHOOT MERISTEMLESS expression begins in only a subset of these cells, demonstrating that KNAT1 is sufficient to induce meristems in the leaf. The shootlike features of the lobed leaves are consistent with the normal domain of KNAT1's expression and further suggest that kn1-related genes may have played a role in the evolution of leaf diversity.  相似文献   

19.
Kessler S  Townsley B  Sinha N 《Plant physiology》2006,141(4):1349-1362
Plant development requires regulation of both cell division and differentiation. The class 1 KNOTTED1-like homeobox (KNOX) genes such as knotted1 (kn1) in maize (Zea mays) and SHOOTMERISTEMLESS in Arabidopsis (Arabidopsis thaliana) play a role in maintaining shoot apical meristem indeterminacy, and their misexpression is sufficient to induce cell division and meristem formation. KNOX overexpression experiments have shown that these genes interact with the cytokinin, auxin, and gibberellin pathways. The L1 layer has been shown to be necessary for the maintenance of indeterminacy in the underlying meristem layers. This work explores the possibility that the L1 affects meristem function by disrupting hormone transport pathways. The semidominant Extra cell layers1 (Xcl1) mutation in maize leads to the production of multiple epidermal layers by overproduction of a normal gene product. Meristem size is reduced in mutant plants and more cells are incorporated into the incipient leaf primordium. Thus, Xcl1 may provide a link between L1 division patterns, hormonal pathways, and meristem maintenance. We used double mutants between Xcl1 and dominant KNOX mutants and showed that Xcl1 suppresses the Kn1 phenotype but has a synergistic interaction with gnarley1 and rough sheath1, possibly correlated with changes in gibberellin and auxin signaling. In addition, double mutants between Xcl1 and crinkly4 had defects in shoot meristem maintenance. Thus, proper L1 development is essential for meristem function, and XCL1 may act to coordinate hormonal effects with KNOX gene function at the shoot apex.  相似文献   

20.
Ledbedeva OV  Ezhova TA  Melzer S 《Genetika》2005,41(8):1068-1074
Mutant Arabidopsis thaliana taeniata (tae) plants are characterized by an altered morphology of leaves and the inflorescence. At the beginning of flowering, the inflorescence produces fertile flowers morphologically intermediate between a shoot and a flower. The recessive mutation tae also causes the formation of ectopic meristems and shoot rosettes on leaves. The expressivity of the mutant characters depend on the temperature and photoperiod. Analysis of the activity of KNOX class I genes in the leaves of the tae mutant has demonstrated the expression of genes KNAT2 and STM and an increase in the expression of genes KNAT1 and KNAT6 compared to wild-type leaves. These data indicate that the TAE gene negatively regulates the KNAT1, KNAT2, KNAT6, and STM genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号