首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 453 毫秒
1.
Arabidopsis thaliana respiratory burst oxidase homolog D (RbohD) functions as an essential regulator of reactive oxygen species (ROS). However, our understanding of the regulation of RbohD remains limited. By variable-angle total internal reflection fluorescence microscopy, we demonstrate that green fluorescent protein (GFP)-RbohD organizes into dynamic spots at the plasma membrane. These RbohD spots have heterogeneous diffusion coefficients and oligomerization states, as measured by photobleaching techniques. Stimulation with ionomycin and calyculin A, which activate the ROS-producing enzymatic activity of RbohD, increases the diffusion and oligomerization of RbohD. Abscisic acid and flg22 treatments also increase the diffusion coefficient and clustering of GFP-RbohD. Single-particle analysis in clathrin heavy chain2 mutants and a Flotillin1 artificial microRNA line demonstrated that clathrin- and microdomain-dependent endocytic pathways cooperatively regulate RbohD dynamics. Under salt stress, GFP-RbohD assembles into clusters and then internalizes into the cytoplasm. Dual-color fluorescence cross-correlation spectroscopy analysis further showed that salt stress stimulates RbohD endocytosis via membrane microdomains. We demonstrate that microdomain-associated RbohD spots diffuse at the membrane with high heterogeneity, and these dynamics closely relate to RbohD activity. Our results provide insight into the regulation of RbohD activity by clustering and endocytosis, which facilitate the activation of redox signaling pathways.  相似文献   

2.
3.
1-Amino-cyclopropane-1-carboxylate synthase (ACS) catalyzes the rate-determining step in the biosynthesis of the plant hormone ethylene, and there is evidence for regulation of stability of the protein by reversible protein phosphorylation. The site of phosphorylation of the tomato enzyme, LeACS2, was recently reported to be Ser460, but the requisite protein kinase has not been identified. In the present study, a synthetic peptide based on the known regulatory phosphorylation site (KKNNLRLS460FSKRMY) in LeACS2 was found to be readily phosphorylated in vitro by several calcium-dependent protein kinases (CDPKs), but not a plant SNF1-related protein kinase or the kinase domain of the receptor-like kinase, BRI1, involved in brassinosteroid signaling. Studies with variants of the LeACS2-Ser460 peptide establish a fundamentally new phosphorylation motif that is broadly targeted by CDPKs: phi -1-[ST]0- phi +1-X-Basic+3-Basic+4, where phi is a hydrophobic residue. Database analysis using the new motif predicts a number of novel phosphorylation sites in plant proteins. Finally, we also demonstrate that CDPKs and SnRK1s do not recognize motifs presented in the reverse order, indicating that side chain interactions alone are not sufficient for substrate recognition.  相似文献   

4.
5.
Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis   总被引:3,自引:0,他引:3  
Perception of general elicitors by plant cells initiates signal transduction cascades that are regulated by protein phosphorylation. The earliest signaling events occur within minutes and include ion fluxes across the plasma membrane, activation of MAPKs, and the formation of reactive oxygen species. The phosphorylation events that regulate these signaling cascades are largely unknown. Here we present a mass spectrometry-based quantitative phosphoproteomics approach that identified differentially phosphorylated sites in signaling and response proteins from Arabidopsis cells treated with either flg22 or xylanase. Our approach was sensitive enough to quantitate phosphorylation on low abundance signaling proteins such as calcium-dependent protein kinases and receptor-like kinase family members. With this approach we identified one or more differentially phosphorylated sites in 76 membrane-associated proteins including a number of defense-related proteins. Our data on phosphorylation indicate a high degree of complexity at the level of post-translational modification as exemplified by the complex modification patterns of respiratory burst oxidase protein D. Furthermore the data also suggest that protein translocation and vesicle traffic are important aspects of early signaling and defense in response to general elicitors. Our study presents the largest quantitative Arabidopsis phosphoproteomics data set to date and provides a new resource that can be used to gain novel insight into plant defense signal transduction and early defense response.  相似文献   

6.
Lu Z  Cheng Z  Zhao Y  Volchenboum SL 《PloS one》2011,6(12):e28228
Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function.  相似文献   

7.
PM28A is a major intrinsic protein of the spinach leaf plasma membrane and the major phosphoprotein. Phosphorylation of PM28A is dependent in vivo on the apoplastic water potential and in vitro on submicromolar concentrations of Ca2+. Here, we demonstrate that PM28A is an aquaporin and that its water channel activity is regulated by phosphorylation. Wild-type and mutant forms of PM28A, in which putative phosphorylation sites had been knocked out, were expressed in Xenopus oocytes, and the resulting increase in osmotic water permeability was measured in the presence or absence of an inhibitor of protein kinases (K252a) or of an inhibitor of protein phosphatases (okadaic acid). The results indicate that the water channel activity of PM28A is regulated by phosphorylation of two serine residues, Ser-115 in the first cytoplasmic loop and Ser-274 in the C-terminal region. Labeling of spinach leaves with 32P-orthophosphate and subsequent sequencing of PM28A-derived peptides demonstrated that Ser-274 is phosphorylated in vivo, whereas phosphorylation of Ser-115, a residue conserved among all plant plasma membrane aquaporins, could not be demonstrated. This identifies Ser-274 of PM28A as the amino acid residue being phosphorylated in vivo in response to increasing apoplastic water potential and dephosphorylated in response to decreasing water potential. Taken together, our results suggest an active role for PM28A in maintaining cellular water balance.  相似文献   

8.
Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Crosstalk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localization and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants.  相似文献   

9.
植物质膜蛋白质组的逆境应答研究进展   总被引:1,自引:0,他引:1  
邱丽丽  赵琪  张玉红 《植物学报》2017,52(2):128-147
质膜作为原生质体与外界环境的屏障, 除了维持正常的细胞内稳态和营养状况, 还参与感知和应答各种环境胁迫。近年来, 植物质膜蛋白质组学研究为深入分析植物应答不同生物和非生物胁迫的分子机制提供了重要信息, 已经报道了模式植物拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)等10种植物质膜应对生物胁迫(白叶枯病菌(Xanthomonas oryzae pv. oryzae)感染)与非生物胁迫(冷、盐、水淹、渗透、高pH值、Fe缺乏及过量、氮素、脱落酸、壳聚糖和壳寡糖)过程的蛋白质丰度模式变化。通过整合分析植物质膜响应逆境的蛋白质组学研究结果, 揭示了质膜在植物应答逆境胁迫过程中的重要作用。植物通过调节转运蛋白、通道蛋白及膜泡运输相关蛋白的丰度变化促进细胞内外的信号传递、物质交换与运输; 同时利用膜相关的G蛋白、Ca2+信号、磷酸肌醇信号途径及BR信号途径等多种信号通路, 通过蛋白质可逆磷酸化作用感知和传递胁迫信号, 调节植物抵御胁迫。研究结果为从蛋白质水平认识质膜逆境应答分子调控机制提供了新线索。  相似文献   

10.
The Ca(2+)-dependent protein kinases (CDPKs) are members of a large subfamily of protein kinases in plants that have been implicated in the control of numerous aspects of plant growth and development. One known substrate of the CDPKs is the ER-located ACA2 calcium pump, which is regulated by phosphorylation of Ser(45). In the present study, a synthetic peptide based on the known regulatory phosphorylation site (RRFRFTANLS(45)KRYEA) was efficiently phosphorylated in vitro by CDPKs but not a plant SNF1-related protein kinase. Phosphorylation of the Ser(45)-ACA2 peptide was surprising because the sequence lacks basic residues at P-3/P-4 (relative to the phosphorylated Ser at position P) that are considered to be essential recognition elements for CDPKs. We demonstrate that phosphorylation of the Ser(45)-ACA2 peptide is dependent on the cluster of basic residues found N-terminal (P-6 to P-9) as well as C-terminal (P + 1/P + 2) to the phosphorylated Ser. The results establish a new general phosphorylation motif for CDPKs: [Basic-Basic-X-Basic]-phi-X(4)-S/T-X-Basic (where phi is a hydrophobic residue). The motif predicts a number of new phosphorylation sites in plant proteins. Evidence is presented that the novel motif may explain the phosphorylation by CDPKs of Ser271 in the aquaporin PM28A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号