首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male mutation bias is a higher mutation rate in males than in females thought to result from the greater number of germ line cell divisions in males. If errors in DNA replication cause most mutations, then the magnitude of male mutation bias, measured as the male-to-female mutation rate ratio (alpha), should reflect the relative excess of male versus female germ line cell divisions. Evolutionary rates averaged among all sites in a sequence and compared between mammalian sex chromosomes were shown to be indeed higher in males than in females. However, it is presently unknown whether individual classes of substitutions exhibit such bias. To address this issue, we investigated male mutation bias separately at non-CpG and CpG sites using human-chimpanzee whole-genome alignments. We observed strong male mutation bias at non-CpG sites: alpha in the X-autosome comparison was approximately 6-7, which was similar to the male-to-female ratio in the number of germ line cell divisions. In contrast, mutations at CpG sites exhibited weak male mutation bias: alpha in the X-autosome comparison was only approximately 2-3. This is consistent with the methylation-induced and replication-independent mechanism of CpG transitions, which constitute the majority of mutations at CpG sites. Interestingly, our study also indicated weak male mutation bias for transversions at CpG sites, implying a spontaneous mechanism largely not associated with replication. Male mutation bias was equally strong at CpG and non-CpG sites located within unmethylated "CpG islands," suggesting the replication-dependent origin of these mutations. Thus, we found that the strength of male mutation bias is nonuniform in the primate genomes. Importantly, we discovered that male mutation bias depends on the proportion of CpG sites in the loci compared. This might explain the differences in the magnitude of primate male mutation bias observed among studies.  相似文献   

2.
Why does the human factor IX gene have a G + C content of 40%?   总被引:20,自引:2,他引:18       下载免费PDF全文
The factor IX gene has a G + C content of approximately 40% in all mammalian species examined. In human factor IX, C----T and G----A transitions at the dinucleotide CpG are elevated at least 24-fold relative to other transitions. Can the G + C content be explained solely by this hot spot of mutation? Using our mathematical model, we show that the elevation of mutation at CpG cannot alone lower the G + C content below 45%. To search for other hot spots of mutation that might contribute to the reduction of G + C content, we assessed the relative rates of base substitution in our sample of 160 families with hemophilia B. Seventeen independent single-base substitutions are reported herein for a total of 96 independent point mutations in our sample. The following conclusions emerge from the analysis of our data and, where appropriate, the data of others: (1) Transversions at CpG are elevated an estimated 7.7-fold relative to other transversions. (2) The mutation rates at non-CpG dinucleotides are remarkably uniform; none of the observed rates are either more than twofold above the median for transitions or more than threefold above the median for transversions. (3) The pattern of recent mutation is compatible with the pattern during mammalian evolution that has maintained the G + C content of the factor IX gene at approximately 40%.  相似文献   

3.
Various estimates of the time at which the human mitochondrial Eve lived have ranged from as little as 60,000 yr to more than 500,000 yr ago. Because of this immense range, it is impossible to distinguish between single-origin and multiple-origins hypotheses for the evolution of our species. In an attempt to reduce the uncertainty, I have examined the largest available body of sequence information, comprising the mitochondrial control region, for clues to how the observed diversity arose. In this region it is possible to show, by examining the distribution of polymorphic sites, that transitions have occurred at some sites at a much higher rate than at others. Computer simulations can, when two rates for transitions are postulated, provide close approximations to the distribution of substitutions seen in the actual data. The “best fit” was obtained when the rate at ¾ of the sites was 4 times the transversion rate, and the rate at the remainder 160 times the transversion rate. The likelihood of such a high rate at some sites helps to explain why tree-building methods employing these data have provided so little phylogenetic information. Furthermore, it is possible to show that transversions do not appear to occur preferentially at these transition “hot-spot” sites and that such huge differences in substitution rates are not seen for transversions, suggesting that the rules governing the mutation and acceptance or rejection of transversions are different from those governing transitions. The great majority of transversions appear to occur at a low rate throughout the region. Thus, methods for determining the age of Eve that are based on recent divergence in human populations, or on applying a mutation probability matrix based on an assumption of uniform mutation rates, are likely to result in underestimates. The rate of accumulation of transversions is shown to be a more accurate estimator of the age of Eve. The conclusion is reached that Eve probably lived (depending on when the ancestors of humans and chimpanzees diverged) between 436,000 and 806,000 yr ago.  相似文献   

4.
Kim BW  Kim BC  Cha JS  Pfeifer GP  Lee CS 《BMB reports》2008,41(8):604-608
1-Nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide are oxidative metabolites that are responsible for the mutagenicity of 1-nitropyrene. In this study, the mutation spectra induced by oxidative metabolites in human cells were determined using a shuttle vector assay. The mutation frequencies induced by 1-nitropyrene 9,10-oxide were 2-3 times higher than those induced by 1-nitropyrene 4,5-oxide. The base substitutions induced by 1-nitropyrene 4,5-oxide were G --> A transitions, G --> C transversions, and G --> T transversions. In the case of 1-nitropyrene 9,10-oxide, G --> A transitions, G --> T transversions, A --> G transitions and G --> C transversions were observed. Most base substitution mutations induced by oxidative metabolites occurred at the guanine sites in the supF gene. These sequence-specific hot spots were commonly identified as 5'-GA sequences for both metabolites. On the other hand, the sequence-specific hot spots at the adenine sites were identified as 5'-CAC sequences for 1-nitropyrene 9,10-oxide. These results suggest that the oxidative metabolites of 1-nitropyrene induce sequence-specific DNA mutations at the guanine and adenine sites at high frequency.  相似文献   

5.

Background  

Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related.  相似文献   

6.
The mutation spectrum of mtDNA hypervariable segment 1 (HVS1) was compared for east chimpanzee Pan troglodytes schweigfurthi and human. The two HVS1 had much the same nucleotide composition, and their mutation spectra were similar in major characteristics (substantial prevalence of transitions over transversions, pyrimidine transitions over purine ones, and C --> T over T --> C). DNA strand displacement (dislocation) during replication was identified as a major mechanism of context-dependent mutagenesis in human and chimpanzee mtDNAs. Nucleotide positions with mutations fitting the model of dislocation mutagenesis accounted for 21% of all variable positions in the chimpanzee HVS1. Variable motifs proved to be similar in the chimpanzee and human HVS1. Comparison of the Neanderthal and modern human HVS1 nucleotide sequences showed that most variable nucleotides are in DNA sites allowing context-dependent mutagenesis.  相似文献   

7.
In the course of an electrophoretic mutation screening program of 32,000 dried blood samples from newborns, 17 genetic variants of apolipoprotein A-I (apoA-I) were found and structurally analyzed. The following defects were identified by the combined use of high performance liquid chromatography, time-of-flight secondary ion mass spectrometry, and sequence analysis: Pro3----Arg (1 x), Pro4----Arg (1 x), Asp89----Glu (1 x), Lys107----0 (4 x), Lys107----Met (2 x), Glu139----Gly (2 x), Glu147----Val (1 x), Pro165----Arg (4 x), and Glu198----Lys (1 x). The distribution of point mutations in the apoA-I gene leading to these 9 and 11 other variants of apoA-I reported previously was statistically analyzed. Substitutions are overrepresented in the 10 amino-terminal amino acids (p less than 0.001, chi 2-test) and in residues 103-177 (p less than 0.025, chi 2-test) or residues 103-198 (p less than 0.05, chi 2-test), respectively. We further noted the following. (i) Prolines were substituted by arginine or histidine residues at a frequency much higher than expected on the basis of random nucleotide substitutions (5 out of 18 "electrically non-neutral" amino acid substitutions, p less than 0.001, chi 2-test). These substitutions are the result of transversions of cytosines contained within stretches of at least 5 consecutive cytosines in the apoA-I gene. The observed hypervariability of the apoA-I amino terminus, therefore, might be caused by a hot spot for mutation formed by the 7 subsequent cytosines in codons 3, 4, and 5. (ii) CpG dinucleotides were overrepresentatively affected by C----T transitions (5 out of 18 electrically nonneutral amino acid substitution, p less than 0.001, chi 2-test). The hypervariability of the apoA-I alpha-helical domain might therefore be caused by CpG dinucleotides predominantly occurring in codons 120-208 of apoA-I (82 out of 125). (iii) Comparison of mutation sites in the human apoA-I gene with sites of nonsynonymous substitutions revealed that amino acid substitutions found in human apoA-I were predominantly localized in areas that were little conserved during mammalian evolution. These regions may therefore represent areas of less structural constraint for the function of apoA-I.  相似文献   

8.
The mutD (dnaQ) gene of Escherichia coli codes for the epsilon subunit of the DNA polymerase III holoenzyme which is involved in 3'----5' exonuclease proofreading activity. We determined the mutational specificity of the mutator allele, mutD5, in the lacI gene of E. coli. The mutD5 mutation preferentially produces single base substitutions as judged from the enhanced fraction of lacI nonsense mutations and the spectrum of sequenced dominant lacI (lacId) and constitutive lacO (lacOc) mutations which were predominantly (69/71) single nucleotide substitutions. The distribution of amber lacI and sequenced lacId mutations revealed that transitions occur more frequently than transversions. A . T----G . C and G . C----A . T transitions were equally frequent and, with one major exception, evenly distributed among numerous sites. Among the transversions, A . T----T . A events were the most common, A . T----C . G substitutions were rare, and G . C----C . G changes were not detected. Transversions were unequally distributed among a limited number of sites with obvious hotspots. All 11 sequenced transversions had a consensus neighboring sequence of 5'-C-C-(mutated G or A)-C-3'. Although no large deletions or complex mutational events were recovered, sequencing revealed that mutD5 induced single nucleotide deletions within consecutive G X C sequences. An extraordinary A . T----G . C transition hotspot occurred at nucleotide position +6 in the lac operator region; the mutD5 mutation frequency of this single base pair was calculated to be 1.2 X 10(-3).  相似文献   

9.
S S Sommer 《FASEB journal》1992,6(10):2767-2774
Germline mutations cause or predispose to most disease. Hemophilia B is a useful model for studying the underlying pattern of recent germline mutations in humans because the observed pattern of mutation in factor IX more closely reflects the underlying pattern of mutation than the observed pattern for many other genes. In addition, it is possible to identify and correct for biases inherent in ascertaining only those mutations that cause hemophilia. Aspects of the pattern of germline mutation in the factor IX gene are becoming clear: 1) in the United States, two-thirds of mutations causing mild disease arose from three founders whereas almost all the mutations resulting in either moderate or severe disease arose independently, generally within the past 150 years; 2) direct estimates of the rates of mutation in humans indicate that transitions are more frequent than transversions, which in turn are more frequent than deletions and insertions; 3) transitions at CpG are elevated approximately 24-fold relative to transitions at non-CpG dinucleotides; 4) transversions at CpG are elevated approximately eightfold relative to transversions at non-CpG dinucleotides; 5) the sum total of the dinucleotide mutation rates produces a bias against G and C bases that would be sufficient to maintain the G+C content of the factor IX gene at its evolutionarily conserved level of 40%; and 6) the pattern of mutation is similar for Caucasians residing in the United States and for Asians residing in Asia. Two ideas emerge from this and from an analysis of the pattern of recent deleterious mutations compared with ancient neutral mutations that have been fixed during evolution into the factor IX gene. First, the bulk of germline mutations are likely to arise from endogenous processes rather than environmental mutagens. Second, the factor IX protein is composed mostly of two classes of amino acids: critical residues in which all single-base missense changes will disrupt protein function, and "spacer" residues in which the precise nature of the residue is unimportant but the peptide bond is necessary to keep the critical residues in register. More work is necessary to assess the veracity and generality of these ideas.  相似文献   

10.
Vertebrate genomes are characterized with CpG deficiency, particularly for GCpoor regions. The GC content-related CpG deficiency is probably caused by context-dependent deamination of methylated CpG sites. This hypothesis was examined in this study by comparing nucleotide frequencies at CpG flanking positions among invertebrate and vertebrate genomes. The finding is a transition of nucleotide preference of 5' T to 5' A at the invertebrate-vertebrate boundary, indicating that a large number of CpG sites with 5' Ts were depleted because of global DNA methylation developed in vertebrates. At genome level, we investigated CpG observed/expected (obs/exp) values in 500 bp fragments, and found that higher CpG obs/exp value is shown in GC-poor regions of invertebrate genomes (except sea urchin) but in GC-rich sequences of vertebrate genomes. We next compared GC content at CpG flanking positions with genomic average, showing that the GC content is lower than the average in invertebrate genomes, but higher than that in vertebrate genomes. These results indicate that although 5' T and 5' A are different in inducing deamination of methylated CpG sites, GC content is even more important in affecting the deamination rate. In all the tests, the results of sea urchin are similar to vertebrates perhaps due to its fractional DNA methylation. CpG deficiency is therefore suggested to be mainly a result of high mutation rates of methylated CpG sites in GC-poor regions.  相似文献   

11.
We develop an approximate maximum likelihood method to estimate flanking nucleotide context-dependent mutation rates and amino acid exchange-dependent selection in orthologous protein-coding sequences and use it to analyze genome-wide coding sequence alignments from mammals and yeast. Allowing context-dependent mutation provides a better fit to coding sequence data than simpler (context-independent or CpG "hotspot") models and significantly affects selection parameter estimates. Allowing asymmetric (nonreciprocal) selection on amino acid exchanges gives a better fit than simple dN/dS or symmetric selection models. Relative selection strength estimates from our models show good agreement with independent estimates derived from human disease-causing and engineered mutations. Selection strengths depend on local protein structure, showing expected biophysical trends in helical versus nonhelical regions and increased asymmetry on polar-hydrophobic exchanges with increased burial. The more stringent selection that has previously been observed for highly expressed proteins is primarily concentrated in buried regions, supporting the notion that such proteins are under stronger than average selection for stability. Our analyses indicate that a highly parameterized model of mutation and selection is computationally tractable and is a useful tool for exploring a variety of biological questions concerning protein and coding sequence evolution.  相似文献   

12.
Sequence Evolution of Drosophila Mitochondrial DNA   总被引:18,自引:3,他引:15       下载免费PDF全文
We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, which is in contrast to the vast excess of transitions over transversions in mammalian mtDNAs. In Drosophila mtDNAs the frequency of C----T substitutions per codon in the third position is 2.5 times greater among codons of two-codon families than among codons of four-codon families; this is contrary to the hypothesis that third position silent substitutions are neutral in regard to selection. In the third position of codons of four-codon families transversions are 4.6 times more frequent than transitions and A----T substitutions account for 86% of all transversions. Ninety-four percent of all codons in the Drosophila mtDNA segments analyzed end in A or T. However, as this alone cannot account for the observed high frequency of A----T substitutions there must be either a disproportionately high rate of A----T mutation in Drosophila mtDNA or selection bias for the products of A----T mutation. --Consideration of the frequencies of interchange of AGA and AGT codons in the corresponding D. yakuba and D. melanogaster mitochondrial protein genes provides strong support for the view that AGA specifies serine in the Drosophila mitochondrial genetic code.  相似文献   

13.
Genomewide comparison of DNA sequences between humans and chimpanzees   总被引:30,自引:1,他引:29       下载免费PDF全文
A total of 8,859 DNA sequences encompassing ~1.9 million base pairs of the chimpanzee genome were sequenced and compared to corresponding human DNA sequences. Although the average sequence difference is low (1.24%), the extent of changes is markedly different among sites and types of substitutions. Whereas ~15% of all CpG sites have experienced changes between humans and chimpanzees, owing to a 23-fold excess of transitions and a 7-fold excess of transversions, substitutions at other sites vary in frequency, between 0.1% and 0.5%. If the nucleotide diversity in the common ancestral species of humans and chimpanzees is assumed to have been about fourfold higher than in contemporary humans, all possible comparisons between autosomes and X and Y chromosomes result in estimates of the ratio between male and female mutation rates of ~3. Thus, the relative time spent in the male and female germlines may be a major determinant of the overall accumulation of nucleotide substitutions. However, since the extent of divergence differs significantly among autosomes, additional unknown factors must also influence the accumulation of substitutions in the human genome.  相似文献   

14.
Population genetic analyses often use polymorphism data from one species, and orthologous genomic sequences from closely related outgroup species. These outgroup sequences are frequently used to identify ancestral alleles at segregating sites and to compare the patterns of polymorphism and divergence. Inherent in such studies is the assumption of parsimony, which posits that the ancestral state of each single nucleotide polymorphism (SNP) is the allele that matches the orthologous site in the outgroup sequence, and that all nucleotide substitutions between species have been observed. This study tests the effect of violating the parsimony assumption when mutation rates vary across sites and over time. Using a context-dependent mutation model that accounts for elevated mutation rates at CpG dinucleotides, increased propensity for transitional versus transversional mutations, as well as other directional and contextual mutation biases estimated along the human lineage, we show (using both simulations and a theoretical model) that enough unobserved substitutions could have occurred since the divergence of human and chimpanzee to cause many statistical tests to spuriously reject neutrality. Moreover, using both the chimpanzee and rhesus macaque genomes to parsimoniously identify ancestral states causes a large fraction of the data to be removed while not completely alleviating problem. By constructing a novel model of the context-dependent mutation process, we can correct polymorphism data for the effect of ancestral misidentification using a single outgroup.  相似文献   

15.
Directed protein evolution is the most versatile method for studying protein structure–function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2–7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard.  相似文献   

16.
Directed protein evolution is the most versatile method for studying protein structure-function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2-7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard.  相似文献   

17.
We have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in our sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P < .01). The aggregate data suggest that the two types of CpG transversions (G:C-->T:A and G:C-->C:G) possess similar mutation rates (24.8 x 10(-10) and 20.6 x 10(-10), respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggests that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined.  相似文献   

18.
In primate genomes more than 40% of CpG islands are found within repetitive elements. With more than one million copies in the human genome, the Alu family of retrotransposons represents the most successful short interspersed element (SINE) in primates and CpG dinucleotides make up about 20% of Alu sequences. It is generally thought that CpG dinucleotides mutate approximately ten times faster than other dinucleotides due to cytosine methylation and the subsequent deamination and conversion of C-->T. However, the disparity of Alu subfamily age estimations based upon CpG or non-CpG substitution density indicates a more complex relationship between CpG and non-CpG substitutions within the Alu elements. Here we report an analysis of the mutation patterns for 5296 Alu elements comprising 20 subfamilies. Our results indicate a relatively constant CpG versus non-CpG substitution ratio of approximately 6 for the young (AluY) and intermediate (AluS) Alu subfamilies. However, a more complex non-linear relationship between CpG and non-CpG substitutions was observed when old (AluJ) subfamilies were included in the analysis. These patterns may be the result of the slowdown of the neutral mutation rate during primate evolution and/or an increase in the CpG mutation rate as the consequence of increased DNA methylation in response to a burst of retrotransposition activity approximately 35 million years ago.  相似文献   

19.
The spectrum of single-base-pair substitutions logged in The Human Gene Mutation Database (HGMD), comprising 7,271 different lesions in the coding regions of 547 different human genes, was analyzed for nearest-neighbor effects on relative mutation rates. Owing to its retrospective nature, HGMD allows mutation rates to be estimated only in relative terms. Therefore, a novel methodology was devised in order to obtain these estimates in iterative fashion, correcting, at the same time, for the confounding effects of differential codon usage and for the fact that different types of amino acid replacement come to clinical attention with different probabilities. Over and above the hypermutability of CpG dinucleotides, reflected in transition rates five times the base mutation rate, only a subtle and locally confined influence of the surrounding DNA sequence on relative single-base-pair substitution rates was observed, which extended no farther than 2 bp from the substitution site. A disparity between the two DNA strands was evidenced by the fact that, when substitution rates were estimated conditional on the 5' and 3' flanking nucleotides, a significant rate difference emerged for 10 of 96 possible pairs of complementary substitutional events. Mutational bias, favoring substitutions toward flanking bases, a phenomenon reminiscent of misalignment mutagenesis, was apparent and exhibited both directionality and reading-frame sensitivity. No specific preponderance of repeat-sequence motifs was observed in the vicinity of nucleotide substitutions, but a moderate correlation between the relative mutability and thermodynamic stability of DNA triplets emerged, suggesting either inefficient DNA replication in regions of high stability or the transient stabilization of misaligned intermediates.  相似文献   

20.
Jiang Z  Wu XL  Zhang M  Michal JJ  Wright RW 《Genetics》2008,180(1):639-647
Bayesian analysis was performed to examine the single-nucleotide polymorphism (SNPs) neighborhood patterns in cattle using 15,110 SNPs, each with a flanking sequence of 500 bp. Our analysis confirmed three well-known features reported in plants and/or other animals: (1) the transition is the most abundant type of SNPs, accounting for 69.8% in cattle; (2) the transversion occurs most frequently (38.56%) in cattle when the A + T content equals two at their immediate adjacent sites; and (3) C <--> T and A <--> G transitions have reverse complementary neighborhood patterns and so do A <--> C and G <--> T transversions. Our study also revealed several novel SNP neighborhood patterns that have not been reported previously. First, cattle and humans share an overall SNP pattern, indicating a common mutation system in mammals. Second, unlike C <--> T/A <--> G and A <--> C/G <--> T, the true neighborhood patterns for A <--> T and C <--> G might remain mysterious because the sense and antisense sequences flanking these mutations are not actually recognizable. Third, among the reclassified four types of SNPs, the neighborhood ratio between A + T and G + C was quite different. The ratio was lowest for C <--> G, but increased for C <--> T/A <--> G, further for A <--> C/G <--> T, and the most for A <--> T. Fourth, when two immediate adjacent sites provide structures for CpG, it significantly increased transitions compared to the structures without the CpG. Finally, unequal occurrence between A <--> G and C <--> T in five paired neighboring structures indicates that the methylation-induced deamination reactions were responsible for approximately 20% of total transitions. In addition, conversion can occur at both CpG sites and non-CpG sites. Our study provides new insights into understanding molecular mechanisms of mutations and genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号