首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
 This commentary article presents an overview of recent experimental results on DNA-mediated electron transfer (ET) from the perspective of semiclassical ET theory. The question concerning whether or not DNA can act as a wire is addressed. Much of the article focuses on a discussion of the decay of electronic coupling (β) between electron donors and acceptors with increasing donor/acceptor separation in DNA and in protein systems. In particular, the dependence of the electronic coupling itself (H AB) on the energy gap between the tunneling energy of the reactants and the virtual ionic states of the DNA bridge is highlighted. The article concludes by suggesting that future experimental and theoretical work in this field should focus on the tunneling gap energies of the systems studied and that special attention should be paid to systems that are likely to be in the "small tunneling gap" regime. It is these systems that are expected to exhibit enhanced electronic couplings and consequently enhanced rates of long-distance ET. Received, accepted: 5 January 1998  相似文献   

2.
Electron tomography (ET) is an indispensable high-resolution tool for three dimensional (3D) imaging in cell biology. When applied to immuno-labeled cells, ET can provide essential insights in both the cellular architecture and the dynamics. Current protocols for 3D immuno-labeling of intracellular antigens include permeabilization steps that cause random, extensive cell membrane disruption. This permeabilization results in a poor cell ultrastructure, limiting the usefulness of the specimens for high-resolution studies. Here we describe a novel method, based on a well-controlled permeabilization by targeted laser cell perforation, that allows for the 3D immuno-localization of cytoplasmic antigens in cultured cells. The approach is unique since it is applicable to both chemically and cryo-fixed cells and leads to a superior ultrastructural preservation for electron microscopy and tomography.  相似文献   

3.
Employment of redox polymers as mediators is a promising concept to facilitate electron transfer (ET) and improve operational performance of bioelectrochemical systems. Materials science offers a broad range of mediation possibilities; however, their employment so far relies on a trial‐and‐error approach, since there is no comprehensive understanding of the nature of the ET between bacterial cells and redox polymers. In the current work, the polymer–cell interaction is investigated in detail and clear experimental evidence that a redox polymer containing quinone moieties mimicking the natural bacterial charge carriers can be incorporated into the respiratory chain of Gram‐positive Enterococcus faecalis cells and outperform monomeric mediator in ET features is reported. The presented findings disclose the main principles to overcome incompatibilities between abiotic charge carriers and microbial metabolism and provide essential knowledge for further development of mediated microbial bioelectrocatalysis.  相似文献   

4.
Two donor-bridge-acceptor compounds containing triphenylamine (TPA) donors and perylenemonoimide (PMI) acceptors have been studied by spectroscopic techniques and quantum chemical computation. Both systems have been observed to emit prompt and delayed fluorescence under certain conditions indicating that forward and reverse electron transfer (ET) processes can occur between the locally excited and the charge separated states. The experimental and computational results show that the TPA and PMI chromophores are better coupled by almost 50% in the meta isomers which undergo ET more readily than the para isomers. Quantum chemical calculations indicate that this unexpected situation is the result of a phenyl group on the side of the bridge being advantageously positioned in the meta isomers. This leads to more extensive delocalisation of the TPA HOMO into the bridge enhancing the total through bond electronic coupling between the TPA and PMI chromophores. The calculations also indicate a strong angle dependence of the total coupling in both isomers. The experimental results are discussed in the context of the high temperature limit of Marcus's theory of non-adiabatic ET.  相似文献   

5.
Electron tomography (ET) has increasingly been used to understand the complexity of membrane systems and protein-trafficking events. By ET and immunonanogold electron microscopy, we recently defined a route for vesicular transport and release of granule-stored products from within activated human eosinophils, cells specialized in the secretion of numerous cytokines and other proteins during inflammatory responses. Here, we highlight these techniques as important tools to unveil a distinct eosinophil vesicular system and secretory pathway.  相似文献   

6.
Charge transport and catalysis in enzymes often rely on amino acid radicals as intermediates. The generation and transport of these radicals are synonymous with proton-coupled electron transfer (PCET), which intrinsically is a quantum mechanical effect as both the electron and proton tunnel. The caveat to PCET is that proton transfer (PT) is fundamentally limited to short distances relative to electron transfer (ET). This predicament is resolved in biology by the evolution of enzymes to control PT and ET coordinates on highly different length scales. In doing so, the enzyme imparts exquisite thermodynamic and kinetic controls over radical transport and radical-based catalysis at cofactor active sites. This discussion will present model systems containing orthogonal ET and PT pathways, thereby allowing the proton and electron tunnelling events to be disentangled. Against this mechanistic backdrop, PCET catalysis of oxygen-oxygen bond activation by mono-oxygenases is captured at biomimetic porphyrin redox platforms. The discussion concludes with the case study of radical-based quantum catalysis in a natural biological enzyme, class I Escherichia coli ribonucleotide reductase. Studies are presented that show the enzyme utilizes both collinear and orthogonal PCET to transport charge from an assembled diiron-tyrosyl radical cofactor to the active site over 35A away via an amino acid radical-hopping pathway spanning two protein subunits.  相似文献   

7.
Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.  相似文献   

8.
Lars J.C. Jeuken 《BBA》2003,1604(2):67-76
Protein-protein electron transfer (ET) plays an essential role in all redox chains. Earlier studies which used cross-linking and increased solution viscosity indicated that the rate of many ET reactions is limited (i.e., gated) by conformational reorientations at the surface interface. These results are later supported by structural studies using NMR and molecular modelling. New insights into conformational gating have also come from electrochemical experiments in which proteins are noncovalently adsorbed on the electrode surface. These systems have the advantage that it is relatively easy to vary systematically the driving force and electronic coupling. In this review we summarize the current knowledge obtained from these electrochemical experiments and compare it with some of the results obtained for protein-protein ET.  相似文献   

9.
We use Normal Mode Analysis to investigate motions in the photosynthetic reaction center (RC) protein. We identify the regions involved in concerted fluctuations of the protein matrix and analyze the normalized amplitudes and the directionality of the first few dominant modes. We also seek to quantify the coupling of normal modes to long-range electron transfer (ET). We find that a quasi-continuous spectrum of protein motions rather than one individual mode contributes to light-driven electron transfer. This is consistent with existing theoretical models (e.g. the spin-boson/dispersed polaron model) for the coupling of the protein and solvent "bath" to charge separation events. [Figure: see text].  相似文献   

10.
 Native nitrite reductases (NIRs) containing both type 1 and 2 Cu ions and type 2 Cu-depleted (T2D) NIRs from three denitrifying bacteria (Achromobacter cycloclastes IAM 1013, Alcaligenes xylosoxidans NCIB 11015, and Alcaligenes xylosoxidans GIFU 1051) have been characterized by electronic absorption, circular dichroism, and electron paramagnetic resonance spectra. The characteristic visible absorption spectra of these NIRs are due to the type 1 Cu centers, while the type 2 Cu centers hardly contribute in the same region. The intramolecular electron transfer (ET) process from the type 1 Cu to the type 2 Cu in native NIRs has been observed as the reoxidation of the type 1 Cu(I) center by pulse radiolysis, whereas no type 1 Cu in T2D NIRs exhibits the same reoxidation. The ET process obeys first-order kinetics, and observed rate constants are 1400–1900 s–1 (t1/2 = ca. 0.5 ms) at pH 7.0. In the presence of nitrite, the ET process also obeys first-order kinetics, with rate constants decreased by factors of 1/12–1/2 at the same pH. The redox potential of the type 2 Cu site is estimated to be +0.24 - +0.28 V, close to that of the type 1 Cu site. Nitrate and azide ions bound to the type 2 Cu site change the redox potential. Nitrite also would shift the redox potential of the type 2 Cu by coordination, and hence the intramolecular ET rate constant is decreased. Pulse radiolysis experiments on T2D NIRs in the presence of nitrite demonstrate that the type 1 Cu(I) site is slowly oxidized with a first-order rate constant of 0.03 s–1 at pH 7.0, suggesting that nitrite bound to the protein accepts an electron from the type 1 Cu. This result is in accord with the finding that T2D NIRs show enzymatic activities, although they are lower than those of the native enzymes. Received: 9 July 1996 / Accepted: 30 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号