首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexins are a family of proteins that bind phospholipids in a calcium-dependent manner. Analysis of the sequences of the different members of the annexin family revealed the presence of a pentapeptide biochemically related to KFERQ in some annexins but not in others. Such sequences have been proposed to be a targeting sequence for chaperone-mediated autophagy, a lysosomal pathway of protein degradation that is activated in confluent cells in response to removal of serum growth factors. We demonstrate that annexins II and VI, which contain KFERQ-like sequences, are degraded more rapidly in response to serum withdrawal, while annexins V and XI, without such sequences, are degraded at the same rate in the presence and absence of serum. Using isolated lysosomes, only the annexins containing KFERQ-like sequences are degraded by chaperone mediated-autophagy. Annexins V and XI could associate with lysosomes but did not enter the lysosomes and were not proteolytic substrates. Furthermore, four annexins containing KFERQ-like sequences, annexins I, II, IV, and VI, are enriched in lysosomes with high chaperone-mediated autophagy activity as expected for substrate proteins. These results provide striking evidence for the importance of KFERQ motifs in substrates of chaperone-mediated autophagy.  相似文献   

2.
A yeast two-hybrid screen identified the regulatory subunit of the calcium-dependent protease calpain as a putative DNA ligase III-binding protein. Calpain binds to the N-terminal region of DNA ligase III, which contains an acidic proline, aspartate, serine, and threonine (PEST) domain frequently present in proteins cleaved by calpain. Recombinant DNA ligase III was a substrate for calpain degradation in vitro. This calpain-mediated proteolysis was calcium-dependent and was blocked by the specific calpain inhibitor calpeptin. Western blot analysis revealed that DNA ligase III was degraded in human fibrosarcoma HT1080 cells following exposure to gamma-radiation. The degradation of DNA ligase III was prevented by pretreatment with calpeptin, which protected irradiated cells from death. Calpeptin treatment also blocked 9-amino camptothecin-induced DNA ligase III proteolysis and simultaneously protected the cells from death. HT1080 clones expressing a modified DNA ligase III that lacked a recognizable PEST domain were significantly more resistant to killing by gamma-radiation or 9- amino camptothecin than were cells that overexpressed the wild-type form of DNA ligase III. These data show that calpain-mediated proteolysis of DNA ligase III plays an essential role in DNA damage-induced cell death in human cells.  相似文献   

3.
We used antibodies that specifically bind annexins on Western blots to determine the distribution and abundance of these proteins in ram spermatids and sperm by immunogold electron microscopy. Annexins I and II were found essentially within the entire acrosome of spermatids. During epididymal maturation, they concentrated in the postacrosomal region or the acrosomal equatorial segment, respectively. They were also present in sperm flagellum, on the surface of the coarse fibers and fibrous sheath. These findings show that during ram germ cell maturation, annexins I and II are exported from the spermatid acrosome towards structurally and functionally defined parts of the sperm. Annexins III, IV, and V were not found in ram germ cells. Annexin VI was isolated from testis and sperm. In spermatids, it was found to be associated with endoplasmic reticulum and the mitochondria but was absent from the acrosome. In sperm, it was confined to the flagellum, the mitochondria, and on the coarse fibers and fibrous sheath. The presence of three annexins, in addition to calmodulin, in functional areas may indicate differential ways for sperm to control and regulate events that are known to be calcium dependent, such as flagellar motility, acrosome reaction, and fertilization.  相似文献   

4.
Many short-lived proteins which are devoid of proteolytic activity contain PEST sequences which are segments along the polypeptide chain that are rich in proline (P), glutamate (E), serine (S) and threonine (T). These designated PEST sequences are believed to be putative intramolecular signals for rapid proteolytic degradation. Calmodulin is a ubiquitous, 17kDa, acidic Ca2+-binding protein which plays an important role in the regulation of many physiological processes through its interaction with a wide range of calmodulin-binding proteins. Several calmodulin-binding proteins are known to contain PEST sequences and are susceptible to proteolysis by endogenous neutral proteases such as calpain I and calpain II. In this report, we discuss the functions of PEST sequences in calmodulin-binding proteins and assess the correlation between calmodulin-binding proteins and PEST sequences.  相似文献   

5.
Abstract: The human neuroblastoma SH-SY5Y was found to express annexins I, II, IV, V, and VI by western blot analysis. Calcium-dependent membrane-binding proteins were isolated from SH-SY5Y and analysed by 2-dimensional gel electrophoresis. Proteins with Mr and pl values similar to those of annexins I, II, III, IV, V, and VI were observed. The identity of annexins II and V was confirmed by western blotting. The membrane association of annexins II and V was studied in cells that had been stimulated to release noradrenaline by K+ depolarisation or by treatment with the ionophore A23187. Annexins II and V were both found to associate with membranes in a manner that was resistant to elution with EGTA and required Triton X-100 for their solubilisation. Homogenisation of cells in calcium-containing buffers also resulted in the formation of EGTA-resistant membrane-associated annexins II and V. The results demonstrate calcium-dependent relocation of annexins II and V to membranes in intact cells and suggest that these annexins bind in a calcium-dependent manner to non-phospholipid components of SH-SY5Y membranes. Examination of cells by immunofluorescence microscopy demonstrated that annexin II was homogeneously associated with the plasma membrane before treatment with ionophore and relocated to discrete patches of staining after treatment. Annexin V was found by immunofluorescence to be present in the cytoplasm and in the nucleus. Stimulation of the cells produced no change in the cytoplasmic staining pattern but resulted in a partial relocation of nuclear annexin V to the periphery of the nucleus. The results argue for a general role for both annexins in calcium signalling at discrete intracellular locations. The results are not consistent with the specific involvement proposed previously for annexin II in membrane fusion at sites of vesicle exocytosis.  相似文献   

6.
The present study tested the hypothesis that calpain is responsible for the limited proteolytic conversion of xanthine dehydrogenase (XD) to xanthine oxidase (XO). We compared the effects of various proteases on the activity and molecular weight of a purified preparation of xanthine dehydrogenase from rat liver. In agreement with previous reports, trypsin treatment produced a complete conversion of XD to XO accompanied by a limited proteolysis of XDH from an Mr of 140 kD to an Mr of 90 kD. Treatment with calpain I or calpain II did not produce a conversion from XD to XO nor did it result in partial proteolysis of the enzyme. Similarly, trypsin treatment partially degraded a reversibly oxidized form of xanthine dehydrogenase while calpain I or calpain II were ineffective. The possibility that an endogenous inhibitor prevented the proteolysis of XDH by calpain I or II was excluded by verifying that brain spectrin, a known calpain substrate, was degraded under the same incubation conditions. The results indicate that calpain is not likely to be responsible for the in vivo conversion of XD to XO under pathological conditions.  相似文献   

7.
Annexins and S100 proteins represent two large, but distinct, calcium-binding protein families. Annexins are made up of a highly alpha-helical core domain that binds calcium ions, allowing them to interact with phospholipid membranes. Furthermore, some annexins, such as annexins A1 and A2, contain an N-terminal region that is expelled from the core domain on calcium binding. These events allow for the interaction of the annexin N-terminus with target proteins, such as S100. In addition, when an S100 protein binds calcium ions, it undergoes a structural reorientation of its helices, exposing a hydrophobic patch capable of interacting with its targets, including the N-terminal sequences of annexins. Structural studies of the complexes between members of these two families have revealed valuable details regarding the mechanisms of the interactions, including the binding surfaces and conformation of the annexin N-terminus. However, other S100-annexin interactions, such as those between S100A11 and annexin A6, or between dicalcin and annexins A1, A2 and A5, appear to be more complicated, involving the annexin core region, perhaps in concert with the N-terminus. The diversity of these interactions indicates that multiple forms of recognition exist between S100 proteins and annexins. S100-annexin interactions have been suggested to play a role in membrane fusion events by the bridging together of two annexin proteins, bound to phospholipid membranes, by an S100 protein. The structures and differential interactions of S100-annexin complexes may indicate that this process has several possible modes of protein-protein recognition.  相似文献   

8.
Molecular determinants of protein half-lives in eukaryotic cells   总被引:16,自引:0,他引:16  
J F Dice 《FASEB journal》1987,1(5):349-357
Multiple pathways of intracellular protein breakdown operate within cells, and the activities of different pathways can be regulated under different physiological conditions. Recent studies suggest that molecular determinants within proteins target them for different pathways of proteolysis. Proteins that are partially unfolded and have an unblocked amino-terminal amino acid with a bulky side chain appear to be good substrates for cytosolic, ubiquitin-mediated pathways of proteolysis. Certain modifications of internal residues such as oxidation of methionines also increase the susceptibility of certain proteins to ubiquitin-mediated proteolysis. Rapidly degraded normal proteins contain peptide regions rich in proline, glutamate, serine, and threonine (PEST regions). The pathway of degradation for these proteins has not been established, but they may be good substrates for calcium-activated proteases. In addition, a lysosomal pathway of protein degradation is activated when serum is withdrawn from cultured cells and is selective for cytosolic proteins containing peptide regions similar to Lys-Phe-Glu-Arg-Gln (KFERQ). This short review summarizes our current understanding of mechanisms of protein breakdown in eukaryotes and evaluates potential molecular determinants of protein half-lives.  相似文献   

9.
ATP-binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, mediates the apoAI-dependent efflux of excess cholesterol from cells. We recently showed that ABCA1 proteolysis by calpain was dependent on a PEST sequence in the cytoplasmic region of ABCA1 and was reversed by apoA-I interaction with ABCA1. We show here that phosphorylation of ABCA1 in HEK293 cells was reduced by 63 +/- 2.4% after removal of the PEST sequence (ABCA1delPEST) or by incubation of cells with apoAI (58 +/- 3.3%). By contrast, ABCA1delPEST showed no further decrease of phosphorylation upon apoAI treatment. To assess the hypothesis that PEST sequence phosphorylation could regulate ABCA1 calpain proteolysis, we mutagenized S/T residues in the PEST sequence and identified Thr-1286 and Thr-1305 as constitutively phosphorylated residues. The ABCA1-T1286A/T1305A mutant was not degraded by calpain and was not further stabilized upon apoA-I treatment. The T1286A/T1305A mutant showed a 3.1-fold increase in cell surface expression and a 2.3-fold increase of apoAI-mediated cholesterol efflux compared with wild type ABCA1. In conclusion, we propose a mechanism of regulation of ABCA1 cell surface expression and function in which the interaction with apoA-I results in dephosphorylation of the ABCA1 PEST sequence and thereby inhibits calpain degradation leading to an increase of ABCA1 cell surface expression.  相似文献   

10.
Abnormal proteolytic processing of beta-amyloid precursor protein (APP) underlies the formation of amyloid plaques in aging and Alzheimer's disease. The proteases involved in the process have not been identified. Here we found that spontaneous proteolysis of intact APP in detergent-lysed human platelets generated a N-terminal fragment that was immunologically indistinguishable from secreted APP, reminiscent of the action of a putative alpha-secretase. This proteolysis of APP was inhibited by EDTA, suggesting that a metal-dependent protease was involved. Among the several metals tested, calcium was the only one that enhanced APP proteolysis and the reaction was blocked by EGTA as well as by several calpain inhibitors. The APP fragments generated by spontaneous proteolysis in platelet lysates were identical to those produced by exposure of partially purified APP to exogenous calpain. Finally, the secretion of APP from intact platelets was inhibited by cell-permeable calpain inhibitors. Taken together, these results suggest that normal processing of APP in human platelets is mediated by a calcium-dependent protease that exhibits calpain-like properties.  相似文献   

11.
12.
During Blastocladiella emersonii germination, the regulatory (R) and the catalytic (C) subunits of the cAMP-dependent protein kinase (PKA) are rapidly and concurrently degraded, after PKA activation in response to a transient increase in intracellular cAMP levels. The possibility that PEST sequences could be acting as proteolytic recognition signals in this process was investigated, and high score PEST sequences were found in both B. emersonii R and C subunits. Deletions in the PEST sequences were obtained by site-directed mutagenesis and the different PKA subunits were independently expressed in Escherichia coli. Proteolysis assays of the various R and C recombinant forms, using B. emersonii cell extracts as the source of proteases, showed a strong correlation between the presence of high score PEST sequences and susceptibility to degradation. Furthermore, the amino-terminal sequence of the proteolytic fragments indicated that the cleavage sites in both subunits are located at or near the PEST regions. The PEST sequence in B. emersonii C subunit, which when deleted or disrupted leads to resistance to proteolysis, is entirely contained in the 72-amino-acid extension located in the N-terminus of the protein. C subunit mutants carrying deletions in this region displayed little difference in their kinetic properties or enzyme thermostability. These results suggest that the N-terminal extension may only play a role in C subunit degradation.  相似文献   

13.
A phospholipid column was prepared by coating siliconized porous glass beads with phospholipids. The analysis of the Ca2+ requirement of lipocortin I and its derivatives in the binding to phospholipids was carried out with this column. The Ca2+ concentration required for 50% binding to the phospholipid column at room temperature was about 30 microM for lipocortin I, while that was reduced to 15 microM when lipocortin I was phosphorylated by the epidermal growth factor receptor/kinase, and a further reduction in the Ca2+ requirement was observed with proteolytic cleavage at the N-terminal region. Cathepsin D and calpain I (low calcium-requiring form of calcium-activated neutral protease) rapidly cleaved human placental lipocortin I at Trp-12 and Lys-26, respectively. These N-terminal-truncated proteins required only 5 microM Ca2+ for 50% binding to the phospholipid column. This enhancement of Ca2+ sensitivity by limited proteolysis was also observed for porcine lung lipocortin I. Essentially the same results were obtained when the Ca2+ sensitivities of the modified lipocortins I were analyzed using dispersed phospholipid vesicles instead of the phospholipid affinity column. Equilibrium dialysis indicated that the release of the N-terminal region markedly increased the affinity of lipocortin I for Ca2+ in the presence of phosphatidylserine, without any appreciable change of the number of Ca2+-binding sites. Limited proteolysis by endogenous proteases such as calpain may be an important regulatory mechanism for the Ca2+ sensitivity of lipocortin I in phospholipid binding.  相似文献   

14.
Annexins are proteins that bind lipids in the presence of calcium. Though multiple functions have been proposed for annexins, there is no general agreement on what annexins do or how they do it. We have used the well-studied conductance probes nonactin, alamethicin, and tetraphenylborate to investigate how annexins alter the functional properties of planar lipid bilayers. We found that annexin XII reduces the nonactin-induced conductance to approximately 30% of its original value. Both negative lipid and approximately 30 microM Ca(2+) are required for the conductance reduction. The mutant annexin XIIs, E105K and E105K/K68A, do not reduce the nonactin conductance even though both bind to the membrane just as wild-type does. Thus, subtle changes in the interaction of annexins with the membrane seem to be important. Annexin V also reduces nonactin conductance in nearly the same manner as annexin XII. Pronase in the absence of annexin had no effect on the nonactin conductance. But when added to the side of the bilayer opposite that to which annexin was added, pronase increased the nonactin-induced conductance toward its pre-annexin value. Annexins also dramatically alter the conductance induced by a radically different probe, alamethicin. When added to the same side of the bilayer as alamethicin, annexin has virtually no effect, but when added trans to the alamethicin, annexin dramatically reduces the asymmetry of the I-V curve and greatly slows the kinetics of one branch of the curve without altering those of the other. Annexin also reduces the rate at which the hydrophobic anion, tetraphenylborate, crosses the bilayer. These results suggest that annexin greatly reduces the ability of small molecules to cross the membrane without altering the surface potential and that at least some fraction of the active annexin is accessible to pronase digestion from the opposite side of the membrane.  相似文献   

15.
In order to examine whether calcium-dependent binding of annexin to acidic phospholipids could change the lipid bilayer environment sufficiently to perturb channel-mediated transmembrane ion-transport, gramicidin A channel activity in planar lipid bilayers was investigated in the presence of calcium and annexins II, III or V. The experiments were performed with membranes consisting of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine in 300 mM KCl solution buffered to pH 7.4 and with either 0.1 or 1 mM calcium added to the solution. Annexin (1 microM) was subsequently applied to the cis side of the membrane. All three annexins (II, III and V) when tested at 1 mM calcium decreased the gramicidin single-channel conductance. Annexins II and III increased the mean lifetime of the channels whereas annexin V seemed to have no influence on the mean lifetime. Since the lifetime of gramicidin A channels is a function of the rate constant for dissociation of the gramicidin dimer, which is dependent on the physical properties of the lipid phase, binding of annexins II and III seems to stabilize the gramicidin channel owing to a change of the bilayer structure.  相似文献   

16.
 Annexins constitute a family of Ca2+- and phospholipid-binding proteins. Although their functions are still not clearly defined, several members of the annexin family have been implicated in membrane-related events along exocytotic and endocytotic pathways. To elucidate a possible correlation of those functional proposals with the tissue distribution of annexins, we analysed immunohistochemically the expression of annexins I, II and IV in a broad variety of human tissues. Annexins I and II were chosen for this study since their functionally relevant N-terminal domains are structurally closely related, whilst annexin IV is structurally less related to the former two proteins. The study revealed distinct expression patterns of annexins I, II and IV throughout the body. Annexin I was found in leucocytes of peripheral blood, tissue macrophages and T-lymphocytes and in certain epithelial cells (respiratory and urinary system, superficial cells of non-keratinised squamous epithelium), annexin II in endothelial cells, myoepithelial cells and certain epithelial cells (mainly respiratory and urinary system), whereas annexin IV was almost exclusively found in epithelial cells. Epithelia of the upper respiratory system, Bowman’s capsule, urothelial cells, mesothelial cells, peripheral nerves, the choroid plexus, ependymal cells and pia mater and arachnoid of meninges generally strongly expressed all three annexins investigated. The characteristic expression in different tissues and the intracellular distribution indicates that the three annexins investigated are involved in aspects of differentiation and/or physiological functions specific to these tissues. Accepted: 15 January 1998  相似文献   

17.
The expression and the subcellular localizations of annexins I, II, IV, VI, and XIII in renal epithelial cells were investigated, using immunological techniques with specific monoclonal antibodies. Upon performing Western blotting experiments, no annexins VI and XIII were detected in kidney, whereas annexins I, II, and IV were. Immunofluorescence labelling procedure performed on thin frozen renal sections showed the presence of these three annexins along the plasma membrane of the collecting duct cells with a restricted expression of annexin I at principal cells. Annexin I was also found present in some glomerular cells. None of these annexins, however, were detected in the proximal tubular cells upon performing immunofluorescence labelling and electrophoretic analysis on an EGTA (ethylenebis(oxyethylenenitrilo)tetraacetic acid)-extractable annexin fraction prepared from freshly isolated cells. This is the first time a mammalian epithelial cell has been found to express non-typical annexin (at least partly solubilized with EGTA). However, when these cells were grown in primary culture, they were found to express annexins I, II, IV, and V. As well as being located along the basolateral membrane, annexins I and II are also present on vesicles, which suggests that these annexins may be involved in vesicular traffic under cell culture conditions.  相似文献   

18.
Four intracellular proteases partially purified from liver preferentially degraded the oxidatively modified (catalytically inactive) form of glutamine synthetase. One of the proteases was cathepsin D which is of lysosomal origin; the other three proteases were present in the cytosol. Two of these were calcium-dependent proteases with different calcium requirements. The low-calcium-requiring type (calpain I) accounted for most of the calcium-dependent activity of both mouse and rat liver. The calcium-independent cytosolic protease, referred to as the alkaline protease, has a molecular weight of 300,000 determined by gel filtration. Native glutamine synthetase was not significantly degraded by the cytosolic proteases at physiological pH, but oxidative modification of the enzyme caused a dramatic increase in its susceptibility to attack by these proteases. In contrast, trypsin and papain did degrade the native enzyme and the degradation of modified glutamine synthetase was only 2- to 4-fold more rapid. Adenylylation of glutamine synthetase had little effect on its susceptibility to proteolysis. Although major structural modifications such as dissociation, relaxation, and denaturation also increased the rate of degradation, the oxidative modification is a specific type of covalent modification which could occur in vivo. Oxidative modification can be catalyzed by a variety of mixed function oxidase systems present within cells and causes inactivation of a number of enzymes. Moreover, the presence of cytosolic proteases which recognize the oxidized form of glutamine synthetase suggests that oxidative modification may be involved in intracellular protein turnover.  相似文献   

19.
Previously we demonstrated that tryptophan hydroxylase (TPH) undergoes very fast turnover driven by ATP-dependent proteolysis in serotonin producing mast cells [Hasegawa et al. (1995) FEBS Lett. 368, 151-154]. We searched for the major proteases involved in the rapid degradation of TPH in RBL2H3 cells. Among various protease inhibitors tested, proteasome inhibitors MG115, MG101, MG132, and lactacystin effectively inhibited the intracellular degradation of TPH. Administration of the proteasome inhibitors to cultured cells caused more than a 5-fold accumulation of TPH. Administration of the inhibitors together with cycloheximide stabilized the amount of TPH with no appreciable increase or decrease. Although MG-series proteasome inhibitors could inhibit calpain, the involvement of calpain was excluded since the cysteine protease inhibitor E-64-d, which acts on calpain, had no effect. Extracts of RBL2H3 cells were shown to contain a protease that digests TPH in an ATP-dependent manner and is sensitive to proteasome inhibitors. The ubiquitination of TPH could be visualized by Western blot analysis using both anti-TPH and anti-ubiquitin antibodies. Based on these results, we conclude that 26S proteasomes are mainly involved in the degradation of TPH. In the reported amino acid sequences of TPH from various sources including human, rabbit, rat, and mouse, a PEST sequence that is widely shared among short-lived proteins has been recognized. It was noted that the PEST sequence lies within the most conserved portion of the enzyme, the pteridine binding site.  相似文献   

20.
The sequential processing of single pass transmembrane proteins via ectodomain shedding followed by intramembrane proteolysis is involved in a wide variety of signaling processes, as well as maintenance of membrane protein homeostasis. Here we report that the recently identified frontotemporal lobar degeneration risk factor TMEM106B undergoes regulated intramembrane proteolysis. We demonstrate that TMEM106B is readily processed to an N-terminal fragment containing the transmembrane and intracellular domains, and this processing is dependent on the activities of lysosomal proteases. The N-terminal fragment is further processed into a small, rapidly degraded intracellular domain. The GxGD aspartyl proteases SPPL2a and, to a lesser extent, SPPL2b are responsible for this intramembrane cleavage event. Additionally, the TMEM106B paralog TMEM106A is also lysosomally localized; however, it is not a specific substrate of SPPL2a or SPPL2b. Our data add to the growing list of proteins that undergo intramembrane proteolysis and may shed light on the regulation of the frontotemporal lobar degeneration risk factor TMEM106B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号