首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在研究HIV-1整合酶(IN)抗药性突变T66I时,发现这一突变同时可以提高整合酶的溶解性。原核表达了IN1?288/T66I和野生型(WT),取菌体破碎后的上清,SDS-PAGE和his标签蛋白质染色进行分析,结果表明IN1?288/T66I可溶性约是WT的2.4倍。600ml培养基中诱导表达IN1?288/T66I/BL21,亲和层析纯化共收获蛋白质4.72mg。用改进的ELISA方法测定IN1?288/T66I和IN1-288/F185K/C280S链转移催化活性,结果显示两种蛋白质活性基本相当。提供了有别于F185K/C280S突变的另外一种整合酶可溶性表达的途径,IN1?288/T66I重组蛋白还可以应用到整合酶抑制剂筛选中,以获取避开T66I抗药性突变的抑制剂。  相似文献   

2.
表达纯化了野生型(WT)及F185K突变型HIV-1整合酶核心区蛋白(INC),并对二者的溶解性和活性进行了比较.实验结果表明:F185K 突变后INC溶解性显著提高,活性有一定程度降低.对WT和F185K INC体系进行了1800 ps的分子动力学模拟.模拟结果表明:F185K INC功能loop区柔性和蛋白质整体运动性降低,使蛋白质活性降低,F185K突变后盐桥网络的变化驱动了INC局部构象改变,引起INC表面的部分疏水残基被包埋,亲水残基暴露,相对亲水溶剂可接近面积增大,同时,突变后INC与水之间形成氢键的数量增加,与水之间作用加强,以上变化使INC溶解性提高.分子动力学模拟与实验结果相吻合.为理解蛋白质溶解性和对蛋白质进行可溶性改造提供了一定的理论依据.  相似文献   

3.
HIV-1整合酶蛋白的可溶性表达及功能研究   总被引:1,自引:1,他引:0  
HIV 1整合酶是HIV病毒复制中一个重要的酶,也是治疗艾滋病药物的一个重要靶点。为了开展以整合酶蛋白为靶点的抑制剂筛选,构建HIV 1整合酶重组质粒,在原核细胞中进行可溶性表达和功能研究。通过重叠PCR技术引入F185K和C280S突变于HIV 1 B亚型标准株的整合酶cDNA片段中,PCR扩增片段克隆到pET 28a(+)表达载体中,构建重组质粒,在E. coli中进行整合酶基因表达,SDS PAGE鉴定表达产物,亲和层析纯化蛋白,酶联免疫吸附实验方法测定整合酶的生物学活性。结果构建的重组质粒获得高效稳定的可溶性表达,ELISA实验证实该蛋白具有整合酶的3′切割DNA和5′链转移的活性。HIV 1整合酶蛋白的可溶性表达和活性研究为建立以整合酶为靶点的抗HIV药物筛选平台打下了基础。  相似文献   

4.
为了实现HIV-1整合酶蛋白核心区 (central core domain of integrase, IN-CCD) 的可溶性表达,并建立以IN-CCD为靶点的抑制剂体外筛选方法,从包含F185K突变HIV-1 IN基因的质粒中经PCR扩增得到含有F185K突变的IN-CCD基因,克隆到pET28b载体上构建重组质粒pIN-CCD,转化pIN-CCD至E. coli BL21 (DE3)中经IPTG诱导、表达,Ni-亲和层析纯化,获得IN-CCD蛋白。修饰DNA底物,以链亲和素包被的磁珠为载体捕获DNA产物,结合酶联免疫吸附测定法(ELISA)检测IN-CCD的去整合活性,并筛选以IN-CCD为靶点的抑制剂。结果表明重组蛋白IN-CCD实现了高效可溶性表达,纯化后蛋白纯度达95%。建立的ELISA可以检测IN-CCD的去整合活性,且方法特异性和灵敏度好,可以实现高通量抑制剂筛选。从100个样品中筛选得到5个具有初步抑制IN-CCD去整合活性的样品。  相似文献   

5.
(R)-1-(1-萘基)乙胺是合成拟钙剂药物盐酸西那卡塞的关键手性中间体,利用ω-转氨酶不对称还原1-萘乙酮合成(R)-1-(1-萘基)乙胺具有较好的应用前景。文中针对节杆菌属Arthrobacter sp.来源的ω-转氨酶,采用随机突变和半理性设计相结合的策略,获得了催化效率和热稳定性提高的突变酶F225M、C281I和F225M/C281I。与WT相比,双突变体F225M/C281I的kcat提高85%,Km下降56%,催化效率kcat/Km提高3.42倍。此外,F225M/C281I催化10mmol/L1-萘乙酮反应24h的转化率提高了22%。分子对接和分子动力学模拟结果表明,F225M/C281I相比于WT增加了与底物1-萘乙酮之间的Pi-Pi相互作用力,导致其催化效率的提高;而且突变酶F225M/C281I的134–139位点残基的均方根波动(RMSF)相比WT明显降低,与半衰期的略微提高相关。  相似文献   

6.
糖苷水解酶第一家族(GH1)β-葡萄糖苷酶(BGL1)有葡萄糖耐受性,进口端位点对酶活性及葡萄糖耐受性有很大影响,但具体作用机制尚不清楚。对嗜热革节孢GH1 BGL1进口端的W168、L173、F348、W349、C169、F180、D237、Y179、A260、H307、N335和E437这12个氨基酸残基进行定点突变,将突变酶与野生酶(WT)在毕赤酵母中表达,表达产物纯化后进行酶活性和葡萄糖耐受性测定。与WT相比,所有突变酶活性均有所降低,其中W168H、N335F和W349G几乎丧失活性。突变F180H、D237S、A260N和H307Y的Km低于WT,所有突变的kcat都降低。除L173Q外,其余突变都保持葡萄糖耐受性,在高浓度(400 mmol/L)葡萄糖时,Y179F和D237S酶活受到显著抑制。本研究表明,进口端位点对酶活性及葡萄糖耐受性均具有一定影响,催化活性通道的结构特异性可能是葡萄糖耐受机制。  相似文献   

7.
二酮酸类化合物(DKAs)是目前最有前景的HIV-1整合酶(integrase, IN)抑制剂.为了解DKAs引起的多种耐药株共有的耐药性机理,选择3种S-1360引起的IN耐药突变体,用分子对接和分子动力学模拟,研究了野生型和突变型IN与S-1360的结合模式,基于该结合模式探讨了3种耐药突变体所共有的耐药性机理.结果表明:在突变体中,S-1360结合到耐药突变IN核心区中的位置靠近功能loop 3区却远离与 DNA结合的关键残基,结合位置不同导致S-1360的抑制作用部分丧失;残基138到166区域的柔性对IN发挥生物学功能很重要,S-1360能与DNA结合的关键残基N155及K159形成氢键,这2个氢键作用降低了该区域的柔性,突变体中无类似氢键,因而该区域柔性增高;在突变体中,S-1360的苯环远离病毒DNA结合区,不能阻止病毒DNA末端暴露给宿主DNA;T66I突变导致残基Ⅰ的长侧链占据IN的活性口袋,阻止抑制剂以与野生型中相同的方式结合到活性中心,这均是产生抗药性的重要原因.这些模拟结果与实验结果吻合,可为抗IN的抑制剂设计和改造提供帮助.  相似文献   

8.
构建和表达人FGF2K18S/S69C 突变体,并筛选最佳的表达条件.对GenBank数据库FGF2序列进行分析后,发现了位于第18位和第69位的氨基酸定向突变之后,能够增加FGF2稳定性.基因合成FGF2K18S/S69C突变体,与载体pET3c连接后转化至大肠杆菌BL21中,用乳糖诱导,以蛋白质表达量为指标,考察诱导剂浓度、装液体积、诱导时机、时间和温度对表达量的影响.成功构建pET3c-FGF2K18S/S69C突变体重组质粒,经菌落PCR、双酶切法和测序法证实质粒构建正确,目的片段长度约447 bp.在BL21中成功表达,FGF2K18S/S69C最佳发酵工艺为:装液量30 mL/250 mL锥形瓶,A600为0.8,乳糖浓度0.5 g/L,37℃、180 r/min诱导4 h.Western blot分析该表达产物表明,该蛋白质可以和人FGF2抗体特异性结合.通过构建pET3c-FGF2突变体基因工程菌,并优化其表达条件,为后续研究FGF2K18S/S69C突变体提供了基础.  相似文献   

9.
利用生物信息学分析黑曲霉木聚糖酶Xyn ZF-2,选择α-螺旋178位点、170位点和180位点氨基酸进行定点突变(K178M,S170F,G180V)获得突变木聚糖酶基因xyn MFV,构建重组表达载体转化大肠杆菌E.coli BL21(DE3)诱导表达。酶学性质分析对比发现,突变酶最适温度(50℃)比原酶(40℃)提高了10℃;40℃条件下保温1 h突变酶Xyn MFV相对酶活力下降到热处理前的56.0%,原酶Xyn ZF-2下降到42.0%;45℃时突变酶Xyn MFV的半衰期t_(1/2)为21 min,与原酶Xyn ZF-2(t_(1/2)=7 min)相比较提高了14 min。结果表明,K178M、S170F、G180V突变木聚糖酶可以提高Xyn ZF-2最适温度和热稳定性。  相似文献   

10.
李娟  吴敬  陈晟  夏伟 《生物工程学报》2023,39(3):1107-1118
L-阿拉伯糖异构酶(L-arabinose isomerase,L-AI)是D-半乳糖异构化生成D-塔格糖的关键酶。为提高L-阿拉伯糖异构酶对D-半乳糖的活性及在生物转化中的转化率,本研究对发酵乳杆菌(Lactobacillus fermentum)CGMCC2921来源的L-阿拉伯糖异构酶进行重组表达和生物转化应用,并对其底物结合口袋进行理性设计以提高酶对D-半乳糖亲和力和催化活性。结果显示,突变体F279I对D-半乳糖的转化率提高至野生型酶的1.4倍,进一步叠加获得的双突变体M185A/F279I的Km和kcat分别为530.8mmol/L与19.9s-1,底物亲和力显著提高,催化效率提高至野生型酶的8.2倍。以400 g/L乳糖为底物时,突变酶M185A/F279I转化率高达22.8%。本研究在乳糖高值化生产塔格糖方面具有重要的应用价值。  相似文献   

11.
We tested whether the selection of target sites can be manipulated by fusing retroviral integrase with a sequence-specific DNA-binding protein. A hybrid protein that has the Escherichia coli LexA protein fused to the C terminus of the human immunodeficiency virus type 1 integrase was constructed. The fusion protein, IN1-288/LA, retained the catalytic activities in vitro of the wild-type human immunodeficiency virus type 1 integrase (WT IN). Using an in vitro integration assay that included multiple DNA fragment as the target DNA, we found that IN1-288/LA preferentially integrated viral DNA into the fragment containing a DNA sequence specifically bound by LexA protein. No bias was observed when the LexA-binding sequence was absent, when the fusion protein was replaced by WT IN, or when LexA protein was added in the reaction containing IN1-288/LA. A majority of the integration events mediated by IN1-288/LA occurred within 30 bp of DNA flanking the LexA-binding sequence. The specificity toward the LexA-binding sequence and the distribution and frequency of target site usage were unchanged when the integrase component of the fusion protein was replaced with a variant containing a truncation at the N or C terminus or both, suggesting that the domain involved in target site selection resides in the central core region of integrase. The integration bias observed with the integrase-LexA hybrid shows that one effective means of altering the selection of DNA sites for integration is by fusing integrase to a sequence-specific DNA-binding protein.  相似文献   

12.
Integration of HIV-1 genome into host cell chromosome is mediated by viral integrase (IN). The IN catalytic core (CC, IN(50-212)) dimerizes through mutual interactions of its alpha1 and alpha5 helices. Peptides INH1 and INH5 reproducing these helix sequences strongly inhibited IN. For instance, an IC(50) of 80 nM was determined for INH5 in integration assays using wild-type IN (wtIN). In size exclusion chromatography, INH1 and INH5 perturbed the association-dissociation equilibrium of both dmIN (IN(1-288)/F185K/C280S) and CC, leading to monomers as surviving species, while in circular dichroism, binding of peptides to dmIN altered the protein conformation. Thus, enzyme deactivation, subunit dissociation, and protein unfolding are events which parallel one another. The target of INH5 in the enzyme was then identified. In fluorescence spectroscopy, C(0.5) values of 168 and 44 nM were determined for the binding affinity of INH5 to IN and CC, respectively, at 115 nM subunit concentration, while interaction of INH5 with INH1 was found stronger than interaction of INH5 with itself (23 times larger in term of dissociation constants). These results strongly suggested that the alpha1 helix is the privileged target of INH5. The latter could serve as a lead for the development of new chemotherapeutic agents against HIV-1.  相似文献   

13.
HIV-1 integrase (IN) is the molecular target of the newly approved anti-AIDS drug raltegravir (MK-0518, Isentress) while elvitegravir (GS-9137, JTK-303) is in clinical trials. The aims of the present study were (1) to investigate and compare the effects of raltegravir and elvitegravir on the three IN-mediated reactions, 3'-processing (3'-P), strand transfer (ST), and disintegration, (2) to determine the biochemical activities of seven IN mutants (T66I, L74M, E92Q, F121Y, Q148K, S153Y, and N155H) previously selected from drug-resistant patients and isolates, and (3) to determine the resistance profile for raltegravir and elvitegravir in those IN mutants. Our findings demonstrate that both raltegravir and elvitegravir are potent IN inhibitors and are highly selective for the ST reaction of IN. Elvitegravir was more potent than raltegravir, but neither drug could block disintegration. All resistance mutations were at least partially impaired for ST. Q148K was also markedly impaired for 3'-P. Both drugs exhibited a parallel resistance profile, although resistance was generally greater for elvitegravir. Q148K and T66I conferred the highest resistance to both drugs while S153Y conferred relatively greater resistance to elvitegravir than raltegravir. Drug resistance could not be overcome by preincubating the drugs with IN, consistent with the binding of raltegravir and elvitegravir at the IN-DNA interface. Finally, we found an inverse correlation between resistance and catalytic activity of the IN mutants.  相似文献   

14.
15.
HIV-1 IN is an essential enzyme for viral replication and an interesting target for the design of new pharmaceuticals for use in multidrug therapy of AIDS. L-731,988 is one of the most active molecules of the class of beta-diketo acids. Individual and combined mutations of HIV-1 IN at residues T66, S153, and M154 confer important degrees of resistance to one or more inhibitors belonging to this class. In an effort to understand the molecular mechanism of the resistance of T66I/M154I IN to the inhibitor L-731,988 and its specific binding modes, we have carried out docking studies, explicit solvent MD simulations, and binding free energy calculations. The inhibitor was docked against different protein conformations chosen from prior MD trajectories, resulting in 2 major orientations within the active site. MD simulations have been carried out for the T66I/M154I DM IN, DM IN in complex with L-731,988 in 2 different orientations, and 1QS4 IN in complex with L-731,988. The results of these simulations show a similar dynamical behavior between T66I/M154I IN alone and in complex with L-731,988, while significant differences are observed in the mobility of the IN catalytic loop (residues 138-149). Water molecules bridging the inhibitor to residues from the active site have been identified, and residue Gln62 has been found to play an important role in the interactions between the inhibitor and the protein. This work provides information about the binding modes of L-731,988, as well as insight into the mechanism of inhibitor-resistance in HIV-1 integrase.  相似文献   

16.
17.
To gain insight into the importance of conserved residues in the core domain of HIV-1 IN, we performed site-directed mutagenesis of the full-length enzyme, overexpressed the mutant proteins in E. coli, purified and analyzed their 3-processing, integration and disintegration activities in vitro. Change of E152V in the DD(35)E motif abolished all detectable activities of IN. Alteration of two highly conserved residues, P145 and K156, by isoleucine, resulted in a substantial loss or completely abolished the three activities of the enzyme. Mutant P90D weakly reduced the 3-processing but severely affected the two other IN activities. Results obtained from double and triple mutations, P90D/P145I and P145I/F185K/C280S, clearly suggest a crucial role of P145 in the catalytic function of IN, whereas the mutants V150E, L158F and L172M had no detectable effect on any of the IN activities. Taken together, these results allowed us to conclude that all the conserved amino acids in the core domain of IN are not equally important for catalytic functions: like D64, D116 and E152, our data suggest that P90, P145 and K156 are also essential for all three enzymatic activities of HIV-1 IN in vitro, whereas V150, L158 and L172 appear to be less critical.  相似文献   

18.
The human immunodeficiency virus type 1 integrase (IN) forms an oligomer that integrates both ends of the viral DNA. The nature of the active oligomer is unclear. Recombinant IN obtained under reducing conditions is always in the form of noncovalent oligomers. However, disulfide-linked oligomers of IN were recently observed within viral particles. We show that IN produced from a baculovirus expression system can form disulfide-linked oligomers. We investigated which residues are responsible for the disulfide bridges and the relationship between the ability to form covalent dimers and IN activity. Only the mutation of residue C280 was sufficient to prevent the formation of intermolecular disulfide bridges in oligomers of recombinant IN. IN activity was studied under and versus nonreducing conditions: the formation of disulfide bridges was not required for the in vitro activities of the enzyme. Moreover, the covalent dimer does not dissociate into individual protomers on disulfide bridge reduction. Instead, IN undergoes a spontaneous multimerization process that yields a homogenous noncovalent tetramer. The C280S mutation also completely abolished the formation of disulfide bonds in the context of the viral particle. Finally, the replication of the mutant virus was investigated in replicating and arrested cells. The infectivity of the virus was not affected by the C280S IN mutation in either dividing or nondividing cells. The disulfide-linked form of the IN oligomers observed in the viral particles is thus not required for viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号