首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Infusion of bombesin stimulates plasma cholecystokinin (CCK) and pancreatic enzyme secretion in various species, including the rat. This study was undertaken in two groups of four conscious rats with a cannulated pancreatic duct to determine the role of endogenously released CCK in mediating the effect of bombesin on pancreatic enzyme secretion. Infusion of 2 ml CCK antiserum or normal rabbit serum for 40 min was followed 10 min later by infusion of 18 pmol/kg bombesin for 30 min and after an interval of 90 min by infusion of 24 pmol/kg CCK for 30 min. After administration of control rabbit serum, pancreatic protein secretion increased by 3.2 +/- 1.0 mg/30 min during bombesin and 4.0 +/- 1.5 mg/30 min during CCK, while the plasma CCK increments were 1.7 +/- 0.5 pM and 7.0 +/- 0.9 pM for the bombesin and CCK infusions, respectively. Immunoneutralisation with the CCK antiserum did not significantly affect bombesin-stimulated pancreatic protein secretion (3.6 +/- 1.3 mg/30 min), but almost abolished the pancreatic protein response to CCK (0.5 +/- 0.2 mg/30 min). It is therefore concluded that CCK is not an important mediator of the stimulatory effect of bombesin on the pancreas in the rat.  相似文献   

2.
The effect of luminal ghrelin on pancreatic enzyme secretion in the rat   总被引:1,自引:0,他引:1  
Ghrelin, a 28-amino-acid peptide produced predominantly by oxyntic mucosa has been reported to affect the pancreatic exocrine function but the mechanism of its secretory action is not clear. The effects of intraduodenal (i.d.) infusion of ghrelin on pancreatic amylase outputs under basal conditions and following the stimulation of pancreatic secretion with diversion of pancreato-biliary juice (DPBJ) as well as the role of vagal nerve, sensory fibers and CCK in this process were determined. Ghrelin given into the duodenum of healthy rats at doses of 1.0 or 10.0 microg/kg increased pancreatic amylase outputs under basal conditions or following the stimulation of pancreatic secretion with DPBJ. Bilateral vagotomy as well as capsaicin deactivation of sensory fibers completely abolished all stimulatory effects of luminal ghrelin on pancreatic exocrine function. Pretreatment with lorglumide, a CCK(1) receptor blocker, reversed the stimulation of amylase release produced by intraduodenal application of ghrelin. Intraduodenal ghrelin at doses of 1.0 or 10.0 microg/kg increased plasma concentrations of CCK and ghrelin. In conclusion, ghrelin given into the duodenum stimulates pancreatic enzyme secretion. Activation of vagal reflexes and CCK release as well as central mechanisms could be implicated in the stimulatory effect of luminal ghrelin on the pancreatic exocrine functions.  相似文献   

3.
We had demonstrated that a peptic hydrolysate of guanidinated casein that is made from casein by the conversion of lysine to homoarginine stimulated pancreatic exocrine secretion in rats with chronic bile-pancreatic juice (BPJ) diversion from the proximal small intestine. This modified protein also stimulated cholecystokinin (CCK) release from dispersed rat intestinal cells. In this study, we found that guanidinated casein hydrolysate stimulates CCK release in chronic BPJ-diverted rats with cholinergic control blocked by atropine. Intraduodenal guanidinated casein hydrolysate increased portal plasma CCK concentration and pancreatic secretion in atropine-treated BPJ-diverted rats. In contrast, the portal plasma CCK concentration was not increased by intact casein hydrolysate. We conclude that guanidinated casein hydrolysate directly stimulates CCK release from the intestine via some cholinergic-independent mechanism, and an increase of the pancreatic exocrine secretion is regulated by CCK released by guanidinated casein hydrolysate. A guanidyl residue is likely to be involved in this control.  相似文献   

4.
Recent studies demonstrated that cholecystokinin (CCK) at physiological levels stimulates pancreatic enzyme secretion via a capsaicin-sensitive afferent vagal pathway. This study examined whether chemical ablation of afferent vagal fibers influences pancreatic growth and secretion in rats. Bilateral subdiaphragmatic vagal trunks were exposed, and capsaicin solution was applied. Pancreatic wet weight and pancreatic secretion and growth in response to endogenous and exogenous CCK were examined 7 days after capsaicin treatment. Perivagal application of capsaicin increased plasma CCK levels and significantly increased pancreatic wet weight compared with those in the control rats. Oral administration of CCK-1 receptor antagonist loxiglumide prevented the increase in pancreatic wet weight after capsaicin treatment. In addition, continuous intraduodenal infusion of trypsin prevented the increase in plasma CCK levels and pancreatic wet weight after capsaicin treatment. There were no significant differences in the expression levels of CCK-1 receptor mRNA and protein in the pancreas in capsaicin-treated and control rats. Intraduodenal administration of camostat or intravenous infusion of CCK-8 stimulated pancreatic secretion in control rats but not in capsaicin-treated rats. In contrast, repeated oral administrations of camostat or intraperitoneal injections of CCK-8 significantly increased pancreatic wet weight in both capsaicin-treated and control rats. Present results suggest that perivagal application of capsaicin stimulates pancreatic growth via an increase in endogenous CCK and that exogenous and endogenous CCK stimulate pancreatic growth not via vagal afferent fibers but directly in rats.  相似文献   

5.
The present study was undertaken to determine whether infusion of cholecystokinin (CCK) to plasma concentrations comparable to those found after a meal stimulates pancreatic enzyme secretion and gallbladder contraction. Plasma CCK concentrations were measured by radioimmunoassay using antibody T204, which binds to all carboxyl-terminal CCK-peptides containing the sulfated tyrosine region. Ingestion of a standardized test meal in 7 normal subjects induced significant increases in plasma CCK from 2.0 +/- 0.2 pmol/l to levels between 4.6 +/- 0.6 and 7.3 +/- 1.0 pmol/l (p less than 0.05-p less than 0.0005). Infusion of 2.5 pmol/kg X h CCK 33 resulted in significant increases in plasma CCK from 2.0 +/- 0.2 to 3.9 +/- 0.3 pmol/l (p less than 0.0005). This infusion of CCK induced significant increases in trypsin secretion from 0.5 +/- 0.1 to 1.4 +/- 0.2 KU/15 min (p less than 0.005) and in bilirubin output from 1.6 +/- 0.7 to 30.3 +/- 8.0 mumol/15 min (p less than 0.05). It is concluded that physiological plasma concentrations of CCK stimulate pancreatic enzyme secretion and gallbladder contraction in man.  相似文献   

6.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

7.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

8.
S Itoh  R Hirota  G Katsuura  K Odaguchi 《Life sciences》1979,25(20):1725-1730
The effect of a cholecystokinin (CCK) preparation on the secretion of corticosterone when injected intraperitoneally and intraventricularly was studied in the rat. Both routes of injections produced pronounced elevation of plasma corticosterone levels, but the minimum effective dose by intraventricular injection was 10 mU/rat and that by intraperitoneal injection 2 U/100 g, or approximately 5 U/rat. Although the effect was observed in vagotomized rats, CCK did not affect the pituitary gland itself. It was inferred that CCK acts directly or indirectly on CRF neurones in the brain. Since CCK preparation used in the present experiments was contaminated with motilin, the effect of synthetic motilin on the adrenocortical secretion was also examined. However, no stimulatory effect was found following intraventricular injection of this peptide.  相似文献   

9.
Cholecystokinin (CCK) and neuropeptide Y (NPY)-related peptides are key regulators of pancreatic enzyme secretion in vertebrates. CCK stimulates enzyme secretion whereas peptide Y (PY), a NPY-related peptide, plays an antagonistic role to that of CCK. In fish, very little is known about how different nutrients affect the synthesis of CCK and PY in the digestive tract, and the mechanism by which CCK and PY actually regulate digestive enzyme secretion is not well understood. In order to determine how different nutrients stimulate the synthesis of CCK and PY in yellowtail (Seriola quinqueradiata), CCK and PY mRNA levels in the digestive tract were measured after oral administration of a single bolus of either phosphate-buffered saline (PBS: control), starch (carbohydrate), casein (protein), oleic acid (fatty acid) or tri-olein (triglyceride). In addition, in order to confirm the synthesis and secretion of digestive enzymes, the mRNA levels and enzymatic activities of three digestive enzymes (lipase, trypsin and amylase) were also analyzed. Casein, oleic acid and tri-olein increased the synthesis of lipase, trypsin and amylase, while starch and PBS did not affect the activity of any of these enzymes. CCK mRNA levels rose, while PY mRNA levels were reduced in fish administered casein, oleic acid and tri-olein. These results suggest that in yellowtail, CCK and PY maintain antagonistic control of pancreatic enzyme secretion after intake of protein and/or fat.  相似文献   

10.
The purpose of this study was to estimate the effects of cholecystokinin (CCK), somatostatin (SS) pancreatic polypeptide (PP) and their interaction with each other, given them in single doses, on pancreatic secretion and pancreatic growth after long-term treatment in rats. The acute secretory effects of the above mentioned peptides were studied on conscious rats supplied with pancreatic, gastric and jugular vein cannulae. The pancreatic growth was characterized by measurements of pancreatic weight, desoxyribonucleic acid (DNA), protein, trypsin and amylase content after 5 days treatment. Amylase output was increased by caerulein alone, and given it in combination with somatostatin (SS), while its value decreased by SS alone. After 5 days treatment, the pancreatic weight, trypsin and amylase activity (hypertrophy) was increased by caerulein, and these values were not altered by S alone. In combinative administration of caerulein with somatostatin, the stimulatory effect by caerulein was decreased. PP given alone or in combination with caerulein decreased both the basal and stimulated amylase output. PP given for 5 days decreased pancreatic trypsin and amylase contents and counteracted the stimulatory effect by caerulein to these enzymes' contents. It has been concluded that: 1. caerulein stimulates both pancreatic enzyme secretion and pancreatic growth; 2. somatostatin inhibits the pancreatic secretion and caerulein induced pancreatic growth, but it does not affect the spontaneous growth of pancreas; 3. pancreatic polypeptide inhibits the pancreatic secretion and decreases pancreatic trypsin and amylase contents.  相似文献   

11.
The growth stimulating-/cholecystokinin (CCK) releasing-peptide (monitor peptide) is a peptide purified from rat bile-pancreatic juice on the basis of its stimulatory activity toward pancreatic enzyme secretion. Its multiple functions and peptide sequence suggested that it is distinct from epidermal growth factor (EGF). However, we found that the peptide competes with [125I]-EGF in the binding to Swiss 3T3 fibroblast cells to almost the same extent as unlabeled EGF does. [125I]-EGF binding was inhibited by 50% by the peptide at 82.8 ng/ml and by unlabeled EGF at 71.4 ng/ml. This suggests that the growth stimulating effect of the peptide on 3T3 fibroblasts is mediated via the EGF receptor, and also suggests that the partial homologous sequence between monitor peptide and EGF is required for the receptor binding, or that the EGF receptor has a broad ligand specificity.  相似文献   

12.
13.
The trypsin-sensitive cholecystokinin-releasing peptide is a peptide purified from rat pancreatic juice on the basis of its stimulatory activity toward pancreatic enzyme secretion. We postulate that the peptide acts as a mediator of pancreatic enzyme secretion in response to dietary protein intake and that it (designated as "monitor peptide" from its role in the intestine) could be responsible for the feedback regulation of pancreatic enzyme secretion. About 20 nmol of the highly purified peptide were obtained from 800 ml of rat pancreatic juice by reverse-phase high performance liquid chromatography. It was then sequenced. The peptide comprises 61 amino acid residues (Table I). It has a sequence that closely resembles that of a highly conserved region in pancreatic secretory trypsin inhibitors (PSTIs, Kazal type inhibitor): -Ile-Tyr-Asx-Pro-Val-Cys-Gly-Thr-Asx-Gly-. However, the peptide is less related to other mammalian PSTIs than they are to each other. The additional 5 residues at the NH2 terminus make the peptide larger than the common 56-residue PSTIs. The trypsin-sensitive cholecystokinin-releasing peptide is to be classified as a Kazal-type inhibitor and may be one of the rat PSTIs or a related peptide. The present results and increasing evidence from other laboratories and ours suggest that Kazal-type inhibitors play previously unrecognized multiple physiological roles.  相似文献   

14.
Further studies on the feedback regulation of pancreatic enzyme secretion by trypsin were conducted in conscious rats, surgically prepared so that pancreatic juice could be collected or returned. Suppression of enzyme secretion by trypsin as well as its stimulation by SBTI occurred only in the upper part of the small intestine, where the hormone CCK is known to be released. Over a limited range, trypsin suppression of pancreatic secretion was proportional to the dose of trypsin. Higher concentrations had no further effect, suggesting "saturation" of the intestine. Trypsin which had its active center blocked by DFP did not suppress enzyme output. These results supported the concept that only trypsin (or chymotrypsin) with an exposed active center suppressed pancreatic enzyme secretion in the rat by somehow suppressing the release of CCK from the intestinal cell. Presumably CCK is released from the intestine following "removal" of trypsin from the intestine either by diverting the juice or by feeding SBTI which binds the enzyme. All of the evidence supported the view that the effect of trypsin or SBTI on pancreatic secretion was mediated at the intestinal level and not in the blood as has been suggested.  相似文献   

15.
A useful method for preparing a synthetic peptide-carrying protein for specific antibody production was established. The monitor peptide is a trypsin-sensitive cholecystokinin-releasing peptide purified from rat pancreatic juice on the basis of its stimulatory activity toward pancreatic enzyme secretion. The NH2-terminus fragment of the monitor peptide (residues 1-14) was synthesized by a solid phase method. Cysteine at the COOH terminus of the fragment was conjugated with amino groups of myoglobin using a hetero-bifunctional reagent. Sequence analysis of the fragment-myoglobin conjugate indicated that the peptide/myoglobin conjugation ratio was about 1/1 (mol/mol). Antiserum against the conjugate from a rabbit effectively abolished the stimulatory activity of the monitor peptide in the rat small intestine.  相似文献   

16.
Immunoreactive cholecystokinin (CCK) levels in human and rat plasma are described using a radioimmunoassay specific for the biologically active sulfated end of CCK. This assay detected significant changes in plasma cholecystokinin levels during intrajejunal administration of amino acids and intravenous infusions of CCK-8 which were followed by increased pancreatic secretion. In humans, the concentration (pg/ml) of plasma cholecystokinin increased from 10.8 to 18.9 following intrajejunal amino acid instillation and from 15.4 to 31.1 during CCK infusion, while pancreatic trypsin secretion increased more than 15 fold. Ingestion of a test meal also caused a rapid and significant elevation (P less than 0.05) in both plasma CCK (14.5-21.7 pg/ml) and gastrin (50-160 pg/ml) levels. In the rat, an injection of 46 ng of CCK-8 produced a 300% increase in immunoreactive plasma CCK levels (2 min) and caused peak pancreatic protein secretion within 5 min; 4 fold lower doses (11.5 ng) elevated plasma CCK by 38% and pancreatic protein secretion to a small but significant extent. The ability of this assay to detect various forms of sulfated CCK in human plasma was also determined. Following gel chromatography on Sephadex G-50, at least three different immunoreactive peaks were found in plasma from fasted subjects and after intrajejunal amino acid stimulation. While the lower molecular weight CCK peptides (CCK-8 and CCK-12) were detected in plasma from both fasted and stimulated subjects, the larger form (CCK-33) was only present in measurable concentrations after amino acid infusion. The simultaneous measurement of increased plasma CCK levels and pancreatic secretion and the changes in the distribution of CCK peptides following amino acid infusion provides strong support that this assay detects physiologically relevant changes in biologically active CCK peptides.  相似文献   

17.
The effect of human pancreatic polypeptide (HPP) on rat pancreatic acini has been studied. It was found that HPP stimulated amylase and lipase release from the acini. The secretory response of acini to HPP was dose-dependent in a sigmoidal fashion. Between 10(-9) M and 10(-8) M concentration of HPP there was a slow increase of enzyme release to about 40-60% over basal release. At concentrations of HPP above 10(-8) M there was a rapid increase of enzyme release, amounting to 4-6 times over basal release at 10(-6) M concentration of HPP. The potency of HPP compared to other secretagogues at 10(-7) M concentration was 45% of CCK, 60% of carbachol and 75% of secretin. HPP did not inhibit the effect of CCK, secretin and carbachol on amylase release. The amylase release stimulated by HPP was accompanied by an increase in 45Ca2+ efflux. Atropine or dibutyryl cyclic GMP did not influence the effect of HPP. It is concluded that HPP stimulates the release of enzymes from rat pancreatic acini and that Ca2+ may be a mediator for this secretion.  相似文献   

18.
The aims of this paper were to study: (1) the effects of TLQP-21 (non-acronic name), the C-terminal region of the VGF (non-acronic name), polypeptide (from residue 557 to 576 of VGF), on in vitro amylase release from rat isolated pancreatic lobules and acinar cells; (2) the mechanism through which TLQP-21 regulates exocrine pancreatic secretion, by using the muscarinic receptor antagonist atropine (10(-6)M) and the cyclo-oxygenase inhibitor, indomethacin (10(-6)M). On pancreatic lobules of rats, concentrations of TLQP-21 from 10(-7) to 10(-5)M significantly (p<0.05) induced a 2-3-fold increase of baseline pancreatic amylase release, measured at the end of 60 min incubation period. Co-incubation with atropine 10(-6)M did not antagonise the enzyme outflow induced by the peptide. On the contrary, co-incubation of TLQP-21 (10(-7) and 10(-6)M) with indomethacin, at concentration of 10(-6)M, which alone did not modify enzyme secretion, completely suppressed the increase of amylase evoked by TLQP-21 on pancreatic lobules. On rat pancreatic acinar cells, TLQP-21, at all the concentrations tested, was unable to affect exocrine pancreatic secretion, indicating an indirect mechanism of action on acinar cells. These results put in evidence, for the first time, that TLQP-21, a VGF-derived peptide, modulates exocrine pancreatic secretion in rats through a stimulatory mechanism involving prostaglandin release. In conclusion, TLQP-21 could be included among the neurohumoral signals regulating pancreatic exocrine secretion, and increases the knowledge concerning the systems controlling this function.  相似文献   

19.
A rat islet amyloid polypeptide (amylin), 37-residue peptide amide was synthesized by the Fmoc-based solid phase method and the biological activity of synthetic rat amylin on exocrine pancreas was evaluated for the first time in conscious rat. Amylin (1, 10 nmol/kg/h) stimulated pancreatic exocrine secretion and plasma gastrin concentration. CR-1409, a CCK receptor antagonist, did not change amylin-stimulated pancreatic secretion. However, omeprazole (proton pump inhibitor) and atropine inhibited amylin-stimulated pancreatic secretion. This study suggests that amylin may play a role in biological action in the exocrine pancreas possibly mediated by gastric acid hypersecretion.  相似文献   

20.
In the present investigation the effect of neurotensin on pancreatic secretion of isolated pancreatic lobules from the rat was examined. We found a dose- and time-dependent stimulation of amylase release beginning with a concentration of 10(-9) M neurotensin. This response was potentiated by the cholinergic agonist carbachol, the gastrointestinal peptide secretin, and the CCK analogue caerulein. As we found neurotensin-immunoreactive nerves within the pancreas and as neurotensin-like immunoreactivity is present in the circulation (found previously), neurotensin may well be a further peptide taking part in the regulation of exocrine pancreatic secretion either as a hormone or a neurotransmitter. Neurotensin would then cooperate with cholinergic mechanisms, secretin, and CCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号