首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants. NO plays a crucial role in growth and development, from germination to senescence, and is also involved in plant responses to biotic and abiotic stresses. In animals, NO is synthesized by well‐described nitric oxide synthase (NOS) enzymes. NOS activity has also been detected in higher plants, but no gene encoding an NOS protein, or the enzymes required for synthesis of tetrahydrobiopterin, an essential cofactor of mammalian NOS activity, have been identified so far. Recently, an NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) has been discovered and characterized. Arabidopsis thaliana plants were transformed with OtNOS under the control of the inducible short promoter fragment (SPF) of the sunflower (Helianthus annuus) Hahb‐4 gene, which responds to abiotic stresses and abscisic acid. Transgenic plants expressing OtNOS accumulated higher NO concentrations compared with siblings transformed with the empty vector, and displayed enhanced salt, drought and oxidative stress tolerance. Moreover, transgenic OtNOS lines exhibited increased stomatal development compared with plants transformed with the empty vector. Both in vitro and in vivo experiments indicate that OtNOS, unlike mammalian NOS, efficiently uses tetrahydrofolate as a cofactor in Arabidopsis plants. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool to improve plant fitness under adverse growth conditions.  相似文献   

2.
3.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

4.
  • Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated.
  • We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage.
  • Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants.
  • The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
  相似文献   

5.
Nitric oxide (NO) is an important molecule that acts in many tissues to regulate a diverse range of physiological processes. It is becoming apparent that NO is a ubiquitous signal in plants. Since the discovery of NO emission by plants in the 1970s, this gaseous compound has emerged as a major signalling molecule involved in multiple physiological functions. Research on NO in plants has gained significant awareness in recent years and there is increasing indication on the role of this molecule as a key-signalling molecule in plants. The investigations about NO in plants have been concentrated on three main fields: The search of NO or any source of NO generation, effects of exogenous NO treatments, NO transduction pathways. However we have limited information about signal transduction procedures by which NO interaction with cells results in altered cellular activities. This article reviews recent advances in NO synthesis and its signalling functions in plants. First, different sources and biosynthesis of NO in plants, then biological processes involving NO signalling are reviewed. NO signalling relation with cGMP, protein kinases and programmed cell death are also discussed. Besides, NO signalling in plant defense response is also examined. Especially NO signalling between animal and plant systems is compared.  相似文献   

6.
NO是植物应激反应的信号分子   总被引:12,自引:3,他引:9  
根据NO的性质和可能的产生途径,略述了生物胁迫(病原菌侵害)和干旱胁迫、盐胁迫、极端温度、机械损伤、臭氧和紫外辐射等各种非生物胁迫信号与NO信号分子的偶联及其信号的级联途径,概括了NO可能介导的生物过程,讨论了NO通过其下游信号过程对与细胞的生理影响以及该下游信号过程所涉及到的cGMP、cADPR的产生和NO与其它信号分子(ROS、SA、ABA等)的协同作用,表明胁迫诱导的NO爆发是激发、启动和装备植物细胞的重要信号级联环节,这个环节能使植物细胞处于应激状态,并迅速作出反应,形成一系列适应机制。  相似文献   

7.
The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen‐deficient and phosphate‐deficient conditions (LN and LP). LN‐induced and LP‐induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN‐induced and LP‐induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild‐type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL‐signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome‐mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO‐activated seminal root elongation under LN and LP conditions, with the involvement of SLs.  相似文献   

8.
In response to flooding/waterlogging, plants develop various anatomical changes including the formation of lysigenous aerenchyma for the delivery of oxygen to roots. Under hypoxia, plants produce high levels of nitric oxide (NO) but the role of this molecule in plant‐adaptive response to hypoxia is not known. Here, we investigated whether ethylene‐induced aerenchyma requires hypoxia‐induced NO. Under hypoxic conditions, wheat roots produced NO apparently via nitrate reductase and scavenging of NO led to a marked reduction in aerenchyma formation. Interestingly, we found that hypoxically induced NO is important for induction of the ethylene biosynthetic genes encoding ACC synthase and ACC oxidase. Hypoxia‐induced NO accelerated production of reactive oxygen species, lipid peroxidation, and protein tyrosine nitration. Other events related to cell death such as increased conductivity, increased cellulase activity, DNA fragmentation, and cytoplasmic streaming occurred under hypoxia, and opposing effects were observed by scavenging NO. The NO scavenger cPTIO (2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide potassium salt) and ethylene biosynthetic inhibitor CoCl2 both led to reduced induction of genes involved in signal transduction such as phospholipase C, G protein alpha subunit, calcium‐dependent protein kinase family genes CDPK, CDPK2, CDPK 4, Ca‐CAMK, inositol 1,4,5‐trisphosphate 5‐phosphatase 1, and protein kinase suggesting that hypoxically induced NO is essential for the development of aerenchyma.  相似文献   

9.
The study was aimed to search out the probable molecule behind the activation of a broad spectrum resistance during Pseudomonas aeruginosa WS-1 mediated induced systemic resistance (ISR) in Capsicum annuum where plants were challenged inoculated with its pathogen Colletotrichum capsici 24 h after induction of ISR. On the fourth day after pathogen inoculation a significant increase of pathogenesis-related (PR) proteins, other defence enzymes and phenolics as well as a two-fold increase of nitric oxide (NO) a potent defence signalling molecule were observed. Treatment of the host with NO donor also induced the same defence molecule in a similar manner. Results suggest the possible signalling role of NO in ISR during crosstalk between ISR inducing agent and pathogen within the host system.  相似文献   

10.
Nitric oxide (NO) has recently joined the select circle of the ubiquitous molecules of plant signalling networks. Indeed, the last decade has produced a tremendous amount of data that evidence the diversity of physiological situations in which NO is involved in plants and the complexity of NO biology. These data also underline our difficulties in providing simple answers to the cardinal questions of where NO comes from and how the NO message is converted into a physiological response. The identification of NO primary targets and NO-regulated genes provides new opportunities to connect NO biochemistry and NO biology. This review summarises our current understanding of NO signalling, from the generation of the NO message to its execution into a cellular response. The review particularly considers whether and how NO may be responsible for specific signalling in different physiological processes.  相似文献   

11.
Background information. Nitric oxide (NO) is an important molecule in innate immune responses. In molluscs NO is produced by mobile defence cells called haemocytes; however, the molecular mechanisms that regulate NO production in these cells is poorly understood. The present study focused on the role of cell signalling pathways in NO production by primary haemocytes from the snail Lymnaea stagnalis. Results. When haemocytes were challenged with PMA (10 μM) or the β‐1,3‐glucan laminarin (10 mg/ml), an 8‐fold and 4‐fold increase in NO production were observed after 60 min respectively. Moreover, the NOS (NO synthase) inhibitors L‐NAME (NG‐nitro‐L‐arginine methyl ester) and L‐NMMA (NG‐monomethyl‐L‐arginine) were found to block laminarin‐ and PMA‐induced NO synthesis. Treatment of haemocytes with PMA or laminarin also increased the phosphorylation (activation) status of PKC (protein kinase C). When haemocytes were preincubated with PKC inhibitors (calphostin C or GF109203X) or inhibitors of the ERK (extracellular‐signal‐regulated kinase) pathway (PD98059 or U0126) prior to challenge, significant reductions in PKC and ERK phosphorylation and NO production were observed following exposure to laminarin or PMA. The greatest effect on NO production was seen with GF109203X and U0126, with PMA‐induced NO production inhibited by 94% and 87% and laminarin‐induced NO production by 50% and 91% respectively. Conclusions. These data suggest that ERK and PKC comprise part of the signalling machinery that regulates NOS activation and subsequent production of NO in molluscan haemocytes. To our knowledge, this is the first report that shows a role for these signalling proteins in the generation of NO in invertebrate defence cells.  相似文献   

12.
Nitric oxide (NO) chemistry inside the body is the most interesting part of its behavior. NO is involved in controlling blood pressure, and in transmitting nerve signals and a variety of other signaling processes. To explain the behavior of NO, it is necessary to determine its immediate concentration or observe time‐dependent changes in its concentration. In Paramecium caudatum, NO is formed by calcium‐dependent nNOS (NOS1)‐like protein, which is distributed in the cytoplasm. NO synthesis affects the ciliary beat and consequent motility of cells and blocked NO synthesis reduces the ability of cells to move. The possibility of online coupling of microdialysis (of P. caudatum solution) with NO detection is demonstrated. Direct measurement of NO is carried out using dilute Bluestar® Forensic reagent (luminol–H2O2 system; one of the NO detections is based upon the chemiluminescent reaction between NO and the luminol–H2O2 system, which is specifically reactive to NO). The effect of a nitric oxide synthase inhibitor, NG‐nitro‐l ‐arginine methyl ester was observed. NO production was inhibited and the movement of P. caudatum was restricted. These effects were time dependent and after a specific time were reversed.  相似文献   

13.
Abiotic stress is one of the main threats affecting crop growth and production. An understanding of the molecular mechanisms that underpin plant responses against environmental insults will be crucial to help guide the rational design of crop plants to counter these challenges. A key feature during abiotic stress is the production of nitric oxide (NO), an important concentration dependent, redox‐related signalling molecule. NO can directly or indirectly interact with a wide range of targets leading to the modulation of protein function and the reprogramming of gene expression. The transfer of NO bioactivity can occur through a variety of potential mechanisms but chief among these is S‐nitrosylation, a prototypic, redox‐based, post‐translational modification. However, little is known about this pivotal molecular amendment in the regulation of abiotic stress signalling. Here, we describe the emerging knowledge concerning the function of NO and S‐nitrosylation during plant responses to abiotic stress.  相似文献   

14.
Hydrogen sulphide (H2S) is emerging as an important signalling molecule involved in plant resistance to various stresses. However, the underlying mechanism of H2S in aluminium (Al) resistance and the crosstalk between H2S and nitric oxide (NO) in Al stress signalling remain elusive. Citrate secretion is a wide‐spread strategy for plants against Al toxicity. Here, two citrate transporter genes, GmMATE13 and GmMATE47, were identified and characterized in soybean. Functional analysis in Xenopus oocytes and transgenic Arabidopsis showed that GmMATE13 and GmMATE47 mediated citrate exudation and enhanced Al resistance. Al treatment triggered H2S generation and citrate exudation in soybean roots. Pretreatment with an H2S donor significantly elevated Al‐induced citrate exudation, reduced Al accumulation in root tips, and alleviated Al‐induced inhibition of root elongation, whereas application of an H2S scavenger elicited the opposite effect. Furthermore, H2S and NO mediated Al‐induced GmMATE expression and plasma membrane (PM) H+‐ATPase activity and expression. Further investigation showed that NO induced H2S production by regulating the key enzymes involved in biosynthesis and degradation of H2S. These findings indicate that H2S acts downstream of NO in mediating Al‐induced citrate secretion through the upregulation of PM H+‐ATPase‐coupled citrate transporter cotransport systems, thereby conferring plant resistance to Al toxicity.  相似文献   

15.
16.
Abscisic acid (ABA)-induced stomatal closure is mediated by a complex, guard cell signalling network involving nitric oxide (NO) as a key intermediate. However, there is a lack of information concerning the role of NO in the ABA-enhanced stomatal closure seen in dehydrated plants. The data herein demonstrate that, while nitrate reductase (NR)1-mediated NO generation is required for the ABA-induced closure of stomata in turgid leaves, it is not required for ABA-enhanced stomatal closure under conditions leading to rapid dehydration. The results also show that NO signalling in the guard cells of turgid leaves requires the ABA-signalling pathway to be both capable of function and active. The alignment of this NO signalling with guard cell Ca2+-dependent/independent ABA signalling is discussed. The data also highlight a physiological role for NO signalling in turgid leaves and show that stomatal closure during the light-to-dark transition requires NR1-mediated NO generation and signalling.  相似文献   

17.
Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, as in the case of ischaemic pre‐conditioning, so that preventing their increase might hamper self‐defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.  相似文献   

18.
19.
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss‐of‐function mutants were sensitivity to drought stress. CLE9‐induced stomatal closure was impaired in abscisic acid (ABA)‐deficient mutants, indicating that ABA is required for CLE9‐medaited guard cell signalling. We further deciphered that two guard cell ABA‐signalling components, OST1 and SLAC1, were responsible for CLE9‐induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase‐deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA‐dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号