首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The solubility of recombinant proteins produced in bacterial cells is considered a key issue in biotechnology as most overexpressed polypeptides undergo aggregation in inclusion bodies, from which they have to be recovered by solubilization and refolding procedures. Physiological and molecular strategies have been implemented to revert or at least to control aggregation but they often meet only partial success and have to be optimized case by case. Recent studies have shown that proteins embedded in inclusion bodies may retain residual structure and biological function and question the former axiom that solubility and activity are necessarily coupled. This allows for a switch in the goals from obtaining soluble products to controlling the conformational quality of aggregated proteins. Central to this approach is the availability of analytical methods to monitor protein structure within inclusion bodies. We describe here the use of Fourier transform infrared spectroscopy for the structural analysis of inclusion bodies both purified from cells and in vivo. Examples are reported concerning the study of kinetics of aggregation and structure of aggregates as a function of expression levels, temperature and co-expression of chaperones.  相似文献   

2.
Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1–42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with β-amyloid and tau proteins in brain tissue sections from Alzheimer’s disease patients.  相似文献   

3.
Misfolded proteins undergo a preferent degradation ruled by the housekeeping bacterial proteolytic system, but upon precipitation as inclusion bodies their stability dramatically increases. The susceptibility of aggregated polypeptides to proteolytic attack remains essentially unexplored in bacteria and also in eukaryotic cells. We have studied here the in vitro proteolysis of beta-galactosidase fusion proteins by trypsin treatment of purified inclusion bodies. A cascade digestion process similar to that occurring in vivo has been observed in the insoluble fraction of the digestion reaction. This suggests that major protease target sites are not either lost or newly generated by protein precipitation and that the digestion occurs in situ probably on solvent-exposed surfaces of inclusion bodies. In addition, the sequence of the proteolytic attack is influenced by protein determinants other than amino acid sequence, the early digestion steps having a dramatic influence on the further cleavage susceptibility of the intermediate degradation fragments. These observations indicate unexpected conformational changes of inclusion body proteins during their site-limited digestion, that could promote protein release from aggregates, thus partially accounting for the plasticity of in vivo protein precipitation and solubilization in bacteria.  相似文献   

4.
Protein aggregation as bacterial inclusion bodies is reversible   总被引:6,自引:0,他引:6  
Inclusion bodies are refractile, intracellular protein aggregates usually observed in bacteria upon targeted gene overexpression. Since their occurrence has a major economical impact in protein production bio-processes, in vitro refolding strategies are under continuous exploration. In this work, we prove spontaneous in vivo release of both beta-galactosidase and P22 tailspike polypeptides from inclusion bodies resulting in their almost complete disintegration and in the concomitant appearance of soluble, properly folded native proteins with full biological activity. Since, in particular, the tailspike protein exhibits an unusually slow and complex folding pathway involving deep interdigitation of beta-sheet structures, its in vivo refolding indicates that bacterial inclusion body proteins are not collapsed into an irreversible unfolded state. Then, inclusion bodies can be observed as transient deposits of folding-prone polypeptides, resulting from an unbalanced equilibrium between in vivo protein precipitation and refolding that can be actively displaced by arresting protein synthesis. The observation that the formation of big inclusion bodies is reversible in vivo can be also relevant in the context of amyloid diseases, in which deposition of important amounts of aggregated protein initiates the pathogenic process.  相似文献   

5.
Several recombinant proteins in inclusion bodies expressed in Escherichia coli have been measured by Fourier transform infrared and solid-state nuclear magnetic resonance spectra to provide the secondary structural characteristics of the proteins from hyperthermophilic archaeon Pyrococcus horikoshii OT3 (hyperthermophilic proteins) in inclusion bodies. The beta-strand-rich single chain Fv fragment (scFv) and alpha-helix-rich interleukin (IL)-4 lost part of the native-like secondary structure in inclusion bodies, while the inclusion bodies composed of the hyperthermophilic proteins of which the native form is alpha-helix rich, are predominated by alpha-helix structure. Further, the secondary structure of the recombinant proteins solubilized from inclusion bodies by detergent or denaturant was observed by circular dichroism (CD) spectra. The solubilization induced the denaturation of the secondary structure for scFv and IL-4, whereas the solubilized hyperthermophilic proteins have retained the alpha-helix structure with the CD properties resembling those of their native forms. This indicates that the hyperthermophilic proteins form native-like secondary structure in inclusion bodies. Refolding of several hyperthermophilic proteins from in vivo aggregated form without complete denaturation could be accomplished by solubilization with lower concentration (e.g. 2 M) of guanidine hydrochloride and removal of the denaturant via stepwise dialysis. This supports the existence of proteins with native-like structure in inclusion bodies and suggests that non-native association between the secondary structure elements leads to in vivo aggregation. We propose a refolding procedure on the basis of the structural properties of the aggregated archaeon proteins.  相似文献   

6.
In this review the mechanisms of protein folding, misfolding, and aggregation as well as the mechanisms of cell defense against toxic protein aggregates are considered. Misfolded and aggregated proteins in cells are exposed to chaperone-mediated refolding and are degraded by proteasomes if refolding is impossible. Proteolysis-stable protein aggregates accumulate, forming inclusion bodies. In eucaryotic cells, protein aggregates form structures in the pericentrosomal area that have been termed "aggresomes". Formation of aggresomes in cells is a general cellular response to the presence of misfolded proteins when the degrading capacity of the cells is exceeded. The role of aggresomes in disturbance of the proteasomal system operation and in cellular death, particularly in the so-called "protein conformational diseases", is discussed.  相似文献   

7.
Many polypeptides overexpressed in bacteria are produced misfolded and accumulate as solid structures called inclusion bodies. Inclusion-body-prone proteins have often been reported to escape precipitation when fused to maltose-binding protein (MBP). Here, we have examined the case of HPV 16 oncoprotein E6. The unfused sequence of E6 is overexpressed as inclusion bodies in bacteria. By contrast, fusions of E6 to the C-terminus of MBP are produced soluble. We have analyzed preparations of soluble MBP-E6 fusions by using three independent approaches: dynamic light scattering, lateral turbidimetry, and sandwich ELISA. All three methods showed that MBP-E6 preparations contain highly aggregated material. The behavior of these soluble aggregates under denaturating conditions suggests that they are formed by agglomeration of misfolded E6 moieties. However, precipitation is prevented by the presence of the folded and highly soluble MBP moieties, which maintain the aggregates in solution. Therefore, the fact that a protein or protein domain is produced soluble when fused to the C-terminus of a carrier protein does not guarantee that the protein of interest is properly folded and active. We suggest that aggregation of fusion proteins should be systematically assayed, especially when these fusions are to be used for binding measurements or activity tests.  相似文献   

8.
The highly conserved ubiquitin-proteasome system (UPS) controls the stability of most nuclear and cytoplasmic proteins and is therefore essential for virtually all aspects of cellular function. We have previously shown that the UPS is impaired in the presence of aggregated proteins that become deposited into cytoplasmic inclusion bodies (IBs). Here, we report that production of protein aggregates specifically targeted to either the nucleus or cytosol leads to global impairment of UPS function in both cellular compartments and is independent of sequestration of aggregates into IBs. The observation of severe UPS impairment in compartments lacking detectable aggregates or aggregation-prone protein, together with the lack of interference of protein aggregates on 26S proteasome function in vitro, suggests that UPS impairment is unlikely to be a consequence of direct choking of proteasomes by protein aggregates. These data suggest a common proteotoxic mechanism for nuclear and cytoplasmic protein aggregates in the pathogenesis of neurodegenerative disease.  相似文献   

9.
Protein aggregation is a process in which identical proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as amorphous, lacking any long-range order, or highly ordered fibrils. Protein fibrils can be composed of native globular molecules, such as the hemoglobin molecules in sickle-cell fibrils, or can be reorganized beta-sheet-rich aggregates, termed amyloid-like fibrils. Amyloid fibrils are associated with several pathological conditions in humans, including Alzheimer disease and diabetes type II. We studied the structure of bacterial inclusion bodies, which have been believed to belong to the amorphous class of aggregates. We demonstrate that all three in vivo-derived inclusion bodies studied are amyloid-like and comprised of amino-acid sequence-specific cross-beta structure. These findings suggest that inclusion bodies are structured, that amyloid formation is an omnipresent process both in eukaryotes and prokaryotes, and that amino acid sequences evolve to avoid the amyloid conformation.  相似文献   

10.
Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号