首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

2.
The salinity tolerance of two commercial rootstocks used for loquat plants (Eribotrya japonica Lindl.), loquat and anger, was studied in a pot experiment. The plants were irrigated using solutions containing 5 and 50mM NaCl and 5 and 25mM calcium acetate for 4 months. The growth, tissue mineral content, water status, and leaf gas exchange responses to salt treatment with and without additional calcium were examined. Plant growth was not modified by salinity in anger (50mM), but was reduced in loquat; leaf biomass and stem diameter were particularly affected. However, Cl(-) levels leaf increased with salinity to a greater extent in anger, while the Na(+) content increased to the same extent in both species, indicating that ion transport from root to leaves was not inhibited in either species. Additional calcium (25mM) reduced Na(+) and Cl(-) concentrations in both species, but did not minimise the effects of salinity on the growth of salt-treated loquat plants. The decrease in K(+) concentrations had no effect on growth, as anger was the most tolerant rootstock and had lowest leaf K(+) content. Salinity reduced the Ca(2+) concentration in the roots of both species. However, when calcium was added, the concentration of Ca(2+) increased in the roots of salinised plants. Leaf water potential at pre-dawn decreased significantly in both species under saline conditions. Leaf gas exchange, stomatal conductance and, in particular, net CO(2) assimilation, decreased with salinity only in loquat, indicating that photosynthesis could be the growth-limiting factor in this species.  相似文献   

3.
Two iso-osmotic concentrations of NaCl and Na2SO4 were used for discriminating between the effects of specific ion toxicities of salt stress on pepper plants (Capsicum annuum L.) grown in hydroponic conditions, in a controlled-environment greenhouse. The two salts were applied to plants at different electrical conductivities, and leaf water relations, osmotic adjustment and root hydraulic conductance were measured. Leaf water potential (w), leaf osmotic potential (o) and leaf turgor potential (p) decreased significantly when EC increased, but the decrease was less for NaCl- than for Na2SO4-treated plants. The reduction in stomatal conductance was higher for NaCl-treated plants. There were no differences in the effect of both treatments on the osmotic adjustment, and a reduction in root hydraulic conductance and the flux of solutes into the xylem was observed, except for the saline ions (Na+, Cl and SO4 2–). Therefore, pepper growth decreased with increasing salinity because the plants were unable to adjust osmotically or because of the toxic effects of Cl, SO4 2– and/or Na+. However, turgor of NaCl-treated plants was maintained at low EC (3 and 4 dS m–1) probably due to the maintenance of water transport into the plant (decrease of stomatal conductance), which, together with the lower concentration of Na+ in the plant tissues compared with the Na2SO4 treatment, could be the cause of the smaller decrease in growth.  相似文献   

4.
Increasing salinity induced a marked reduction in the plant growth, thoughPhaseolus seedlings tolerated salinity up to 120 mM NaCI. A great reduction in sugar and protein contents occurred with increasing salinity, whereas soluble nitrogen compounds and the relative contents of the photosynthetic pigments were increased in the treated plants. Increasing Ca concentration in the salinized medium appeared to improve the plant growth and to increase the contents of saccharides and proteins in the NaCl-treated plants. This suggests that Ca could be added to salinized media to overcome the deleterious effects of salinity on the growth and productivity of leguminous crop plants.  相似文献   

5.
Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L0), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L0 measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.  相似文献   

6.
Silicon can alleviate salt damage to plants, although the mechanism(s) still remains to be elucidated. In this paper, we report the effect of silicon on chloride transport in rice (Oryza sativa L.) seedlings in saline conditions. In the absence of salinity, silicon enhanced the growth of shoots, but not roots in three cultivars (cv. GR4, IR36, and CSR10). Salinity reduced the growth of both shoots and roots in all three genotypes. In saline conditions, addition of silicon to the culture solution again improved the growth of shoots, but not of roots. Under these saline conditions, the concentrations of chloride in the shoot were markedly decreased by adding silicon and the ratio of K+/Cl was significantly increased, while the concentration of chloride in the roots was unchanged. The decrease in chloride concentration in the shoot was correlated with the decrease in transpirational bypass flow in rice, as shown by the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). Addition of silicon increased the net photosynthetic rate, stomata conductance, and transpiration of salt-stressed plants in cv. IR36, indicating that the reduction of chloride (and sodium) uptake by silicon was not through a reduction in transpiration rate. Silicon addition also increased the instantaneous water use efficiency of salt-stressed plants, while it did not change the relative growth rate of shoots. The results suggest that silicon addition decreased transpirational bypass flow in the roots, and therefore decreased the transport of chloride to the shoot.  相似文献   

7.
The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.  相似文献   

8.
The effects of NaCl were studied in 6-month-old jack pine (Pinus banksiana Lamb.) seedlings growing in solution culture under hypoxic (approximately 2 mg lу O2) and well-aerated (approximately 8 mg lу O2) conditions. The results showed that hypoxia led to further reduction of stomatal conductance (gs) in plants treated with 45 mM NaCl. This effect was likely due to a reduction in root hydraulic conductance by both stresses. When applied individually or together, neither 45 mM NaCl nor hypoxia affected cell membrane integrity of needles as measured by tissue electrolyte leakage. Hypoxia did not alter shoot Na+ and Clm concentrations in NaCl-treated plants. However, root Na+ concentrations were lower in NaCl-treated hypoxic plants, suggesting that hypoxia affected the ability of roots to store Na+. Hypoxia also induced root electrolyte leakage from NaCl-treated and control plants. The higher root Clm concentrations compared with Na+ and the positive correlation between root Clm concentrations and electrolyte leakage suggest that Clm played a major role in salt injury observed in jack pine seedlings. Roots of well-aerated plants treated for 1 week with NaCl contained almost two-fold higher concentration of total non-structural carbohydrates compared with plants from other experimental treatments and these concentrations decreased in subsequent weeks. We suggest that under prolonged hypoxic conditions, roots lose the ability to prevent Clm uptake resulting in the increase in root Clm concentration, which has damaging effects on root cell membranes.  相似文献   

9.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

10.
Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50–150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance.  相似文献   

11.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

12.
The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m?1) and saline (4 dS·m?1). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl? in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m?1) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species.  相似文献   

13.
This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.  相似文献   

14.
The effect of salt stress on leaf morphology and functionality was studied in three Populus alba genotypes differing in tolerance to salinity: 6K3 (sensitive), 2AS11 (moderately tolerant), and 14P11 (tolerant). Plants were subjected to an intense and progressive salt stress from 50 to 250 mM NaCl by 50 mM steps at 10-day intervals. The micromorphological results highlighted phenotypic variation among the three genotypes already in control plants, with the genotype 14P11 having significantly smaller epidermal cells and higher stomatal density. Salt-treated plants modulated differently the expansion of stomata compared with epidermal cells. Regression analysis showed significant correlations between decrease of stomatal area and stomatal conductance (gs) in genotypes 14P11 and 6K3. So, the common reduction of stomatal area could be an early mechanism to save water in this species. However, only genotype 14P11 showed further significant decrease of this trait under the highest salinity level, combined with a significant reduction in leaf length. In addition, this genotype showed the lowest leaf abscission rate at the end of salt stress period. The genotype 6K3 was severely affected by leaf necrosis and showed the highest leaf abscission rate in salt stress conditions. In the moderately tolerant genotype 2AS11, an intermediate plastic behaviour in both leaf morphology and physiology was observed during the experiment. The phenotypic variation among the three genotypes in terms of micromorphology and stomatal conductance is discussed in relation to plant functionality in salt stress conditions. Overall results suggest that leaf morphological habit contributes to salt tolerance in P. alba.  相似文献   

15.
Though halophytes are naturally adapted to salinity, their salt-tolerance limits are greatly influenced by their provenance and developmental stage. In the present study, physio-biochemical responses of two Tunisian ecotypes of the oilseed coastal halophyte Cakile maritima (Brassicaceae) to salinity (0–400 mM NaCl) were monitored during germination and vegetative growth stages. Tabarka and Jerba seeds were collected from humid or arid climatic areas, respectively. Plant response to salinity appeared to depend on the ecotype and salinity levels. Increasing salinity inhibited germination process. Jerba seeds were found to be more salt tolerant than the Tabarka ones. At the autotrophic stage of growth and under salt-free conditions, Jerba was less productive than Tabarka (in terms of dry matter accumulation), but plant biomass production and leaf expansion (area and number) of the former ecotype were progressively improved by 100 mM NaCl, as compared to the control. In contrast, at the same salt concentration, these parameters decreased under increasing salinity in Tabarka (salt sensitive). Leaf chlorophyll content was reduced at severe salinity, but this effect was more conspicuous in the sensitive Tabarka plants. Na+ contents in the Jerba and Tabarka leaves collected from the 400 mM NaCl-treated plants were 17- and 12-fold higher than in the respective controls. This effect was accompanied by a significant reduction in the leaf K+, Mg2+ and Ca2+ contents, especially in the salt-treated Tabarka. A significant accumulation of proline and soluble carbohydrates in leaves was found during the period of intensive leaf growth. These organic compounds likely play a role in leaf osmotic adjustment and in protection of membrane stability at severe salinity.  相似文献   

16.
The effects of Si nutrition on transpiration, leaf anatomy, accumulation of Na+, K+, Cl?, P, Fe and B and some reactive oxygen species related parameters were investigated in canola plants under salinity. Plants were grown hydroponically in growth chamber under controlled conditions at 0 and 100?mM NaCl each supplied with or without 1.7?mM silicon (Si) as sodium silicate. Salinity imposed significant reduction in growth parameters of plants like fresh weights of roots and shoots and leaf area. It also led to accumulation of Na+ and Cl? and a decrease in the concentration of K+, P, B and Fe. Reduction of transpiration, stomatal density and specific leaf area in leaves and an increase in leaf thickness were amongst other symptoms in salt-affected plants. Salinity led to higher concentration of hydrogen peroxide, increased lipid peroxidation and decrease of catalase and peroxidase activity, which suggests the induction of oxidative stress in plants. Silicon nutrition could prevent toxic ions (Na+ and Cl?) accumulation while higher levels of essential minerals like K+, P and Fe were maintained in plants. Consequently, silicon nutrition decreased oxidative stress in plants, evidenced by increase in antioxidant enzyme activity, reduction in hydrogen peroxide and lipid peroxidation.  相似文献   

17.
Plant growth promoting endophytic bacteria Burkholderia phytofirmans PsJN was used to investigate the potential to ameliorate the effects of drought stress on growth, physiology and yield of wheat (Triticum aestivum L.) under natural field conditions. Inoculated and uninoculated (control) seeds of wheat cultivar Sahar 2006 was sown in the field. The plants were exposed to drought stress at different stages of growth (tillering stage and flowering stage) by skipping the respective irrigation. The results showed that drought stress adversely affected the physiological, biochemical and growth parameters of wheat seedlings. It decreased the CO2 assimilation, stomatal conductance, relative water content, transpiration rate and chlorophyll contents in wheat. Inoculation of wheat with PsJN significantly diluted the adverse effects of drought on relative water contents and CO2 assimilation rate thus improving the photosynthetic rate, water use efficiency and chlorophyll content over the uninoculated control. Grain yield was also decreased when plants were exposed to drought stress at the tillering and flowering stage, but inoculation resulted in better grain yield (up to 21 and 18 % higher, respectively) than the respective uninoculated control. Similarly, inoculation improved the ionic balance, antioxidant levels, and also increased the nitrogen, phosphorus, potassium and protein concentration in the grains of wheat. The results suggested that B. phytofirmans strain PsJN could be effectively used to improve the growth, physiology and quality of wheat under drought conditions.  相似文献   

18.
Sheng M  Tang M  Chen H  Yang B  Zhang F  Huang Y 《Mycorrhiza》2008,18(6-7):287-296
The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (varphiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.  相似文献   

19.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity.  相似文献   

20.
In the global change scenario, increased CO2 may favour water use efficiency (WUE) by plants. By contrast, in arid and semiarid areas, salinity may reduce water uptake from soils. However, an elevated WUE does not ensure a reduced water uptake and upon salinity this fact may constitute an advantage for plant tolerance. In this work, we aimed to determine the combined effects of enhanced [CO2] and salinity on the plant water status, in relation to the regulation of PIP aquaporins, in the root and leaf tissues of broccoli plants (Brassica oleracea L. var Italica), under these two environmental factors. Thus, different salinity concentrations (0, 60 and 90 mM NaCl) were applied under ambient (380 ppm) and elevated (800 ppm) [CO2]. Under non-salinised conditions, stomatal conductance (Gs) and transpiration rate (E) decreased with rising [CO2] whereas water potential (Ψω) was maintained stable, which caused a reduction in the root hydraulic conductance (L0). In addition, PIP1 and PIP2 abundance in the roots was decreased compared to ambient [CO2]. Under salinity, the greater stomatal closure observed at elevated [CO2] – compared to that at ambient [CO2] – caused a greater reduction in Gs and E and allowed plants to maintain their water balance. In addition, a lower decrease in L0 under salt stress was observed at elevated [CO2], when comparing with the decrease at ambient [CO2]. Modifications in PIP1 and PIP2 abundance or their functionality in the roots is discussed. In fact, an improved water status of the broccoli plants treated with 90 mM NaCl and elevated [CO2], evidenced by a higher Ψω, was observed together with higher photosynthetic rate and water use efficiency. These factors conferred on the salinised broccoli plants greater leaf area and biomass at elevated [CO2], in comparison with ambient [CO2]. We can conclude that, under elevated [CO2] and salt stress, the water flow is influenced by the tight control of the aquaporins in the roots and leaves of broccoli plants and that increased PIP1 and PIP2 abundance in these organs provides a mechanism of tolerance that maintains the plant water status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号