首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60 degrees C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45 degrees C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products.  相似文献   

2.
An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60°C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45°C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products.  相似文献   

3.
V A David  A H Deutch  A Sloma  D Pawlyk  A Ally  D R Durham 《Gene》1992,112(1):107-112
The gene (nprV), encoding the extracellular neutral protease, vibriolysin (NprV), of the Gram- marine microorganism, Vibrio proteolyticus, was isolated from a V. proteolyticus DNA library constructed in Escherichia coli. The recombinant E. coli produced a protease that co-migrated with purified neutral protease from V. proteolyticus on non-denaturing polyacrylamide gels, and that demonstrated enzymatic specificity towards the neutral protease substrate N-[3-(2-furyl)acryloyl]-L-alanylphenylalanine amide. The nucleotide (nt) sequence of the cloned nprV gene revealed an open reading frame encoding 609 amino acids (aa) including a putative signal peptide sequence followed by a long 'pro' sequence consisting of 172 aa. The N-terminal aa sequence of NprV purified from cultures of V. proteolyticus, identified the beginning of the mature protein within the aa sequence deduced from the nt sequence. Comparative analysis of mature NprV to the sequences of the neutral proteases from Bacillus thermoproteolyticus (thermolysin) and Bacillus stearothermophilus identified extensive regions of conserved aa homology, particularly with respect to active-site residues, zinc-binding residues, and calcium-binding sites. NprV was overproduced in Bacillus subtilis by placing the DNA encoding the 'pro' and mature enzyme downstream from a Bacillus promoter and signal sequence.  相似文献   

4.
Yang J  Huang X  Tian B  Sun H  Duan J  Wu W  Zhang K 《Biotechnology letters》2005,27(17):1329-1334
The gene encoding a cuticle-degrading serine protease was cloned from three isolates of Lecanicillium psalliotae (syn. Verticillium psalliotae) by 3′ and 5′ RACE (rapid amplification of cDNA ends) method. The gene encodes for 382 amino acids and the protein shares conserved motifs with subtilisin N and peptidase S8. Comparison of translated cDNA sequences of three isolates revealed one amino acid polymorphism at position 230. The deduced protease sequence shared high degree of similarities to other cuticle-degrading proteases from other nematophagous fungi.  相似文献   

5.
The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40T, was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0–9.5 and 45°C in 100 mM glycine–NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40T was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.  相似文献   

6.
Six genes encoding high-molecular-mass subtilisins (HMSs) of alkaliphilic Bacillus spp. were cloned and sequenced. Their open reading frames of 2,394–2,424 bp encoded prosubtilisins of 798–808 amino acids (aa) consisting of the prepropeptides of 151–158 aa and the mature enzymes of 640–656 aa. The deduced aa sequences of the mature enzymes exhibited 60–95% identity to those of FT protease of Bacillus sp. strain KSM-KP43, a subtilisin-like serine protease, and a minor serine protease, Vpr, of Bacillus strains. Three of the six recombinant enzymes were susceptible to proteolysis, but the others were autodigestion resistant. All enzymes had optimal pH values of 10.5–11.0, optimal temperatures of 40–45°C for hydrolysis of a synthetic substrate, and were heat labile. These alkaline proteases seem to form a new subtilisin family, as judged by their aa sequences and phylogenetic analysis.Communicated by K. Horikoshi  相似文献   

7.
Two serine protease inhibitors (named BMSI 1 and BMSI 2, respectively) were identified from the skin secretions of the toad, Bombina microdeladigitora. The cDNAs encoding BMSIs were cloned from a cDNA library prepared from the toad skin. The deduced complete amino acid sequences of BMSIs indicate that mature BMSI 1 and BMSI 2 are composed of 60 amino acids including 10 half-cystines to form 5 disulfide bridges. A FASTA search in the databanks revealed that BMSIs exhibit sequence similarity with other serine protease inhibitors from amphibians of the genus Bombina. BMSI 1 potently inhibited trypsin and thrombin with a K(i) value of 0.02 μM and 0.15 μM, respectively. Sequence analysis revealed that all serine protease inhibitors from five amphibians of the genus Bombina share highly conserved primary structures.  相似文献   

8.
A gene encoding a subtilisin-like protease, designated islandisin, from the extremely thermophilic bacterium Fervidobacterium islandicum (DSMZ 5733) was cloned and actively expressed in Escherichia coli. The gene was identified by PCR using degenerated primers based on conserved regions around two of the three catalytic residues (Asp, His, and Ser) of subtilisin-like serine protease-encoding genes. Using inverse PCR regions flanking the catalytic residues, the gene could be cloned. Sequencing revealed an open reading frame of 2,106 bp. The deduced amino acid sequence indicated that the enzyme is synthesized as a proenzyme with a putative signal sequence of 33 amino acids (aa) in length. The mature protein contains the three catalytic residues (Asp177, His215, and Ser391) and has a length of 668 aa. Amino acid sequence comparison and phylogenetic analysis indicated that this enzyme could be classified as a subtilisin-like serine protease in the subgroup of thermitase. The whole gene was amplified by PCR, ligated into pET-15b, and successfully expressed in E. coli BL21(DE3)pLysS. The recombinant islandisin was purified by heat denaturation, followed by hydroxyapatite chromatography. The enzyme is active at a broad range of temperatures (60 to 80 degrees C) and pHs (pH 6 to 8.5) and shows optimal proteolytic activity at 80 degrees C and pH 8.0. Islandisin is resistant to a number of detergents and solvents and shows high thermostability over a long period of time (up to 32 h) at 80 degrees C with a half-life of 4 h at 90 degrees C and 1.5 h at 100 degrees C.  相似文献   

9.
Summary The gene encoding lysostaphin of Staphylococcus staphylolyticus was cloned in Escherichia coli and its DNA sequence was determined. The complete coding region comprises 1440 base pairs corresponding to a precursor of 480 amino acids (molecular weight 51669). It was shown by NH2-terminal amino acid sequence analysis of the purified extracellular lysostaphin from S. staphylolyticus that the mature lysostaphin consists of 246 amino acid residues (molecular weight 26926). Polyacrylamide gel electrophoresis revealed a similar molecular weight for the most active form. By computer analysis the secondary protein structure was predicted. It revealed three distinct regions in the precursor protein: a typical signal peptide (ca. 38 aa), a hydrophilic and highly ordered protein domain with 14 repetitive sequences (296 aa) and the hydrophobic mature lysostaphin. The lysostaphin precursor protein appears to be organized as a preprolysostaphin.Abbreviations aa amino acid(s)  相似文献   

10.
Yuan J  Zhou J  Hu X  Li N 《Biochemical genetics》2007,45(3-4):185-194
We report cDNA sequences for the preproghrelin gene from goose, duck, and emu. This gene is involved in stimulating the release of growth hormone in mammals and may play a similar role in avian species. The complete coding sequence of avian preproghrelin encodes a 116 amino acid (aa) protein, which is organized into three parts: the N-terminal hydrophobic signal peptide, a 26 aa peptide for mature ghrelin, and a long C-terminal polypeptide. Domain/motif structures of preproghrelin protein are highly conserved among avian species. Although the avian and mammalian homologs are not highly similar for the whole 116 aa sequence, the identity of the highly conserved “active core” sequence and the n-octanoyl modification of the serine 3 residue avian ghrelin protein with its mammalian homologs implies conserved function of ghrelin protein during evolution. Information provided in this study will be useful in further studies to determine the role the preproghrelin gene plays in the regulation of growth hormone release and body weight gain in avian species. Jing Yuan and Jianjun Zhou contributed equally to this work  相似文献   

11.
We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH(2)-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (k(cat)/K(m)) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H(2)O(2), which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had an ORF of 1149bp encoding a protein of 383 aa organized into a signal peptide (29 aa), a pro-protein (79 aa) and a mature enzyme (275 aa). The deduced amino acid sequence inspection displays an important homology with other bacterial proteases. The highest homology of 98.1% was found with BPP-A protease from Bacillus pumilus MS-1, with only 8 aa of difference.  相似文献   

12.
弗氏链霉菌丝氨酸蛋白酶基因的克隆及表达   总被引:5,自引:0,他引:5  
从一株具有极强的降解羽毛能力的弗氏链霉菌菌株(Streptomyces fradiae var.k11)中纯化得到了一种丝氨酸蛋白酶SFP2。经蛋白测序,得到部分氨基酸序列,设计简并引物,PCR扩增得到部分基因序列,通过构建基因文库,获得了包括信号肽序列在内的完整的基因sfp2(EMBL收录号AJ784940),开放阅读框全长924bp,包括114bp的信号肽编码序列和810bp的酶原编码序列, 其中成熟蛋白编码基因长576bp,编码191个氨基酸,理论分子量为19.112kD。酶原编码基因和成熟蛋白编码基因均在大肠杆菌和枯草芽孢杆菌中得到了表达,酶原编码基因表达产物具有正常的生物学活性,证明了克隆基因的生物学功能。  相似文献   

13.
The entire amino acid sequence of bifunctional alginate lyase from Pseudoalteromonas sp. strain No. 272 were determined by two approaches, Edman degradation of the peptides obtained from protease digestion of the enzyme protein and analysis of PCR products of the structural gene. The former resulted in incomplete amino acid sequence in the entire sequence, due to lacking of the proper peptides from the protease digestion. To compensate for this lack of sequences we applied the method of PCR of the structural gene that was initially elucidated from the primers designed from N- and C-terminal amino acid sequences of the enzyme. The results of the amino acid sequences from these two approaches showed good agreement. The enzyme consisted of 233 amino acid residues with a molecular mass of 25,549.5, including the sole W and cystine residue. The sequence homology search among the other alginate lyases from different origins indicated that they were very weakly homologous, with the exception of the sequence homology (80.3%) of Pseudoalteromonas elyakovii alginate lyase. The consensus sequence, YFKhG + Y-Q (Wong, T. Y., Preston, L. A., and Schiller, N. L. 2000. Annu. Rev. Microbiol. 54: 289–340) in the C-terminal regions was conserved. The kinetic analyses of chemical modification of some amino acid residues of the enzyme showed that W, K, and Y appeared to be important in the enzyme function.  相似文献   

14.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

15.
A high-molecular-mass subtilisin was found in culture broth of the alkaliphilic Bacillus sp. strain KSM-KP43. The gene encoding the enzyme (FT protease) was determined using a mixed primer designed from the N-terminal amino acid (aa) sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of a 2427-bp open reading frame (ORF) that encoded a putative prepro-peptide (152 aa) and a mature enzyme (656 aa; 68,506 Da). The deduced aa of the mature enzyme revealed a moderate homology to a subtilisin-type proteinase from Bacillus halodurans and a minor extracellular protease, Vpr, from Bacillus subtilis with 64% and 57% identity, respectively. The molecular mass of the purified recombinant FT protease was approximately 72 kDa as judged by both SDS-polyacrylamide gel electrophoresis (PAGE) and gel filtration. FT protease showed maximal activity toward glutaryl-Ala-Ala-Pro-Leu-p-nitroanilide at pH 10.5 and at 45 degrees C. The enzyme was rapidly inactivated by incubation over 45 degrees C for 15 min at both pH 7 and 10. Calcium ions were slightly protective for thermoinactivation of the enzyme.  相似文献   

16.
A second lysyl endopeptidase gene (lepB) was found immediately upstream of the previously isolated lepA gene encoding a highly active lysyl endopeptidase in Lysobacter genomic DNA. The lepB gene consists of 2,034 nucleotides coding for a protein of 678 amino acids. Amino acid sequence alignment between the lepA and lepB gene products (LepA and LepB) revealed that the LepB precursor protein is composed of a prepeptide (20 amino acids [aa]), a propeptide (184 aa), a mature enzyme (274 aa), and a C-terminal extension peptide (200 aa). The mature enzyme region exhibited 72% sequence identity to its LepA counterpart and conserved all essential amino acids constituting the catalytic triad and the primary determining site for lysine specificity. The lepB gene encoding the propeptide and mature-enzyme portions was overexpressed in Escherichia coli, and the inclusion body produced generated active LepB through appropriate refolding and processing. The purified enzyme, a mature 274-aa lysine-specific endopeptidase, was less active and more sensitive to both temperature and denaturation with urea, guanidine hydrochloride, or sodium dodecyl sulfate than LepA. LepA-based modeling implies that LepB can fold into essentially the same three-dimensional structure as LepA by placing a peptide segment, composed of several inserted amino acids found only in LepB, outside the molecule and that the Tyr169 side chain occupies the site in which the indole ring of Trp169, a built-in modulator for unique peptidase functions of LepA, resides. The results suggest that LepB is an isozyme of LepA and probably has a tertiary structure quite similar to it.  相似文献   

17.
The gene for an alkaline serine protease from alkalophilic Bacillus sp. NKS-21 (subtilisin ALP I) was cloned, and its nucleotide sequence was determined. The gene (aprQ) contained an open reading frame of 1125 bp, encoding a primary product of 374 amino acids. The mature protease, composed of 272 amino acids, was preceded by a putative signal sequence of 37 amino acids and a pro-sequence of 65 amino acids. The mature protease conserved the catalytic triad, Asp, His, and Ser, as subtilisin BPN or other subtilisins, and the subtilisin ALP I might belong to the subtilisin super family. The primary structure of subtilisin ALP I was compared and discussed with those of 13 subtilisins, 5 subtilisins from alkalophilic Bacillus, and 8 from neutrophiles. Low homology was shown between subtilisin ALP I and subtilisins from alkalophiles or subtilisins from neutrophiles. Forty-five amino acid residues of the mature protein of subtilisin ALP I were entirely independent of other subtilisins. According to the homology of ALP I with other subtilisins, subtilisin ALP I might be in the middle point between alkaline subtilisins and neutral ones.  相似文献   

18.
19.
We previously reported purification and characterization of a 90k serine protease with pI 3.9 from Bacillus subtilis (natto) No. 16 [Kato et al. 1992 Biosci Biotechnol Biochem 56:1166]. The enzyme showed different and unique substrate specificity towards the oxidized B-chain of insulin from those of well-known bacterial serine proteases from Bacillus subtilisins. The structural gene, hspK, for the 90k serine protease was cloned and sequenced. The cloned DNA fragment contained a single open reading frame of 4302 bp coding a protein of 1433 amino acid residues. The deduced amino acid sequence of the 90k-protease indicated the presence of a typical signal sequence of the first 30 amino acids region and that there was a pro-sequence of 164 amino acid residues after the signal sequence. The mature region of the 90k-protease started from position 195 of amino acid residue, and the following peptide consisted of 1239 amino acid residues with a molecular weight of 133k. It might be a precursor protein of the 90k-protease, and the C-terminal region of 43k might be degraded to a mature protein from the precursor protein. The catalytic triad was thought to consist of Asp33, His81, and Ser259 from comparison of the amino acid sequence of the 90k-protease with those of the other bacterial serine proteases. The high-molecular-weight serine protease, the 90k-protease, may be an ancient form of bacterial serine proteases.  相似文献   

20.
The gene encoding an alkaline serine protease from alkaliphilic Bacillus sp. 221 was cloned in Escherichia coli and expressed in Bacillus suhtilis. An open reading frame of 1,140 bases, identified as the protease gene was preceded by a putative Shine-Dalgarno sequence (AGGAGG) with a spacing of 7 bases. The deduced amino acid sequence had a pre-pro-peptide of 111 residues followed by the mature protease comprising 269 residues. The alkaline protease from alkaliphilic Bacillus sp. 221 had higher homology to the protease from alkaliphilic bacilli (82.1% and 99.6%) than to those from neutrophilic bacilli (60.6—61.70/0). Also Bacillus sp. 221 protease and other protease from alkaliphilic bacilli shared common amino acid changes and 4 amino acid deletions that seemed to be related to characteristics of the enzyme of alkaliphilic bacilli when compared to the proteases from neutrophilic bacilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号