首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary The synthesis ofN-protected L-amino acid (3-benzylquinoxalin-2-yl) hydrazide derivatives is reported here. 3-Benzyl-2-hydrazinoquinoxaline was prepared and then coupled withN-Boc-L-amino acids including; Alanine, Valine, Leucine, Phenylalanine, Tyrosine, Serine and Proline in the presence of HBTU as a coupling reagent to provide the expected product with high yield and purity. The products were deprotected by p-toluenesulphonic acid in acetonitrile and then the tosylate salts were evaluated for antibacterial and antifungal activity. Abbreviations: HBTU, N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate N-oxide Boc,t-butyloxycarbonyl, DIEA, diisopropylethylamine; DMF, N,N-dimethylformamide; PTSA, p-toluenesulphonic acid, TEA, triethyl amine. Amino acids are abbreviated and designated following the rules of the IUPAC-IUB Commission of BiochemicalNomenclature (J. Biol. Chem., 247 (1972) 977).  相似文献   

2.
Fibromodulin from bovine articular cartilage has been subjected to lectin affinity chromatography by Sambucus nigra lectin which binds α(2-6)- linked N-acetylneuraminic acid, and the structure of the keratan sulphate in the binding and non-binding fractions examined by keratanase II digestion and subsequent high pH anion exchange chromatography. It has been confirmed that the keratan sulphate chains attached to fibromodulin isolated from bovine articular cartilage may have the chain terminating N-acetylneuraminic acid residue α(2-3)- or α(2-6)-linked to the adjacent galactose residue. Although the abundance of α(2-6)-linked N-acetylneuraminic acid (ca. 22%) is such that this could cap one of the four chains in almost all fibromodulin molecules, it was found that ca. 34% of the fibromodulin proteoglycan molecules from bovine articular cartilage were capped exclusively with α(2-3)-linked N-acetylneuraminic acid. The remainder of the fibromodulin proteoglycans, which bound to the lectin had a mixture of α(2-3)- and α(2-6)-linked N-acetylneuraminic acid capping structures. The keratan sulphates attached to fibromodulin molecules capped exclusively with α(2-3)- linked N-acetylneuraminic acid were found to have a higher level of galactose sulphation than those from fibromodulin with both α(2-3)- and α(2-6)-linked N-acetylneuraminic acid caps, which bound to the Sambucus nigra lectin. In addition, both pools contained chains of similar length (ca. 8–9 disaccharides). Both also contained α(1-3)-linked fucose, showing that this feature does not co-distribute with α(2-6)-linked N-acetylneuraminic acid, although these two features are present only in mature articular cartilage. These data show that there are discrete populations of fibromodulin within articular cartilage, which may have differing impacts upon tissue processes.  相似文献   

3.
Bile acid N-acetylglucosaminyltransferase activity has been identified in microsomes from human liver and kidney. In both organs the transferases required UDP-N-aeetylglucosamine as sugar donor and were mainly active towards ursodeoxycholic acid. Minor activities were observed towards amidated ursodeoxycholic, hyodeoxycholic and β-muricholic acids. No N-acetylglucosaminidation was detectable with the major primary and secondary bile acids suggesting a specific requirement of the enzymes for bile acids containing 7β- or 6α-hydroxyl groups. Kinetic parameters and other catalytic properties of liver and kidney microsomal N-acetylglucosaminyltransferase activities towards ursodeoxycholic acid are described.  相似文献   

4.
Two types of reductive intermediates, linear and tricyclic forms, isolated from browning mixtures of triose reductone (TR) with guanine and its derivatives showed evident mutagenicity on Salmonella typhimurium TA 100 without S-9 mixture. The linear intermediates, N2-(3-oxo-2-hydroxypropenyl) compounds of guanine, guanosine, 2′(3′)-guanylic acid and 5′-guanylic acid were more effective than the tricyclic one, l, N2-(2-hydroxypropenylidene)guanine, though they were far less active than 4-nitroquinoline-N-oxide. No acceleration in mutagenicity was observed with Cu2 + and other metal ions. The reaction mixtures of TR and nucleic acid bases were also mutagenic on TA 100. Intermediates of TR with guanine and its derivatives did not have a lethal effect in Recassays with Bacillus subtilis.  相似文献   

5.
The overexpression of N-acetylneuraminic acid (Neu5Ac) is closely correlated with malignant transformations. Thus, Neu5Ac is an important target in the design of cancer vaccines. To study the influence of chemical modifications of Neu5Ac on its immunological properties, the α-allyl glycosides of five differently N-acylated neuraminic acid derivatives were prepared. Following selective ozonolysis of their allyl group to form an aldehyde functionality, they were coupled to keyhole limpet hemocyanin (KLH) via reductive amination. Resultant glycoconjugates were studied in C57BL/6 mice. The N-propionyl, N-iso-butanoyl and N-phenylacetyl derivatives of neuraminic acid provoked robust immune responses of various antibody isotypes, including IgM, IgG1, IgG2a and IgG3, whereas N-trifluoropropionylneuraminic acid and natural Neu5Ac were essentially nonimmunogenic. Moreover, the N-phenylacetyl and N-iso-butanoyl derivatives mainly induced IgG responses that are desirable for antitumor applications. These results raise the promise of formulating effective glycoconjugate cancer vaccines via derivatizing sialic acid residues of sialooligosaccharides. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
From cultures of human umbilical vein endothelial cells incubated with3H-glucosamine or35S-sulphate, we have purified three heparan sulphate proteoglycans: 1) a low density (1.31 g/ml) proteoglycan from the cell extract, 2) a low density proteoglycan from the medium, and 3) a high density (>1.4 g/ml) proteoglycan from the medium. The disaccharide composition of heparan sulphate chains from the low density proteoglycan of the medium was examined, using specific chemical and enzymic degradations followed by gel chromatography and strong anion exchange HPLC. Chains released from each of the different proteoglycan populations were then compared by gel chromatography and gradient polyacrylamide gel electrophoresis before and after various specific degradations. The results indicate that heparan sulphate from human endothelial cells are large polymers (MW>50,000) of low overall sulphation (32–35%N-sulphated glucosamine and an N/O-linked sulphate ratio of 2.0) with rare and solitary heparin-like disaccharides. Heparan sulphate from the different proteoglycan populations appeared to have similar structure except that chains from the high density fraction were larger polymers.Abbreviations HSPG heparan sulphate proteoglycan - DSPG dermatan sulphate proteoglycan - GlcNAc(6S) N-acetylglucosamine 6-sulphate - GlcNAc6R glucosamine with either-OH or-OSO3 at C-6 - GlcNR glucosamine with either-SO3 or-COCH3 as N-substituent - GlcNSO3 N-sulphated glucosamine - GlcNSO3(3S) N-sulphated glucosamine 3-sulphate - GlcA d-glucuronic acid - IdoA l-iduronic acid - IdoA(2S) iduronic acid 2-sulphate - HexA hexuronic acid - DHexA hexuronic acid with a 4,5-double bond - Xyl xylose - SAX strong anion exchange - d.p. degree of polymerization (a disaccharide has d.p.=1 etc) - AUFS absorbance units full scale The codes used for proteoglycans denote in turn: C 2, low-density (1.35–1.28 g/ml) HSPG from the cell extract; M 1a, high density (>1.4 g/ml) HSPG fraction from the spent medium; M 2a, low-density (1.31 g/ml) HSPG from the spent medium [6].  相似文献   

8.
The racemic and enantioselective synthesis of a novel glyceric acid derivative, namely, 2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid as well as the antioxidant activities is described. The virtually pure enantiomers, (+)‐(2R,3S)‐2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid and (?)‐(2S,3R)‐2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid were synthesized for the first time via Sharpless asymmetric dihydroxylation of trans‐caffeic acid derivatives using the enantiocomplementary catalysts, (DHQD)2‐PHAL and (DHQ)2‐PHAL. The determination of enantiomeric purity of the novel chiral glyceric acid derivatives was performed by high‐performance liquid chromatographic techniques on the stage of their alkylated precursors. The novel glyceric acid derivatives show strong antioxidant activity against hypochlorite and N,N‐diphenyl‐N‐picryl‐hydrazyl free radical. Their antioxidant activity is about 40‐fold higher than that of the corresponding natural polyether and three‐fold higher of trans‐caffeic acid itself. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Three polymerizable ATP derivatives, N6-[N-(6-methacrylamidohexyl)carbamoylmethyl]-, N6-[N -[2-[N -(2-methacrylamidoethyl)carbamoyl]ethyl]carbamoylmethyl]-, and N6 -[N -[N -(2-hydroxy- 3-methacrylamidopropyl)carbamoylmethyl]carbamoylmethyl]-ATP, were synthesized and radically copolymerized with comonomers [acrylamide, N -(2-hydroxyethyl)-, N -ethyl-, N, N - diethylacrylamide, acrylic acid, and 6-methacrylamidohexylammonium chloride] to obtain 18 new polymer derivatives of ATP. The molecular weight distributions were controlled by appropriate initiator concentrations. The monomeric and polymeric ATP derivatives were all coenzymically active against both hexokinase and glycerol kinase. The observed coenzymic activities (Km and Vmax) are discussed in connection with the structures of the derivatives.  相似文献   

10.
The biotransformation of [2-14C](±)9, 10-dihydrojasmonic acid (DJA) was studied in excised shoots of 6-day-old barley seedlings after 72 h. From the ethyl acetate extract, some minor metabolites were isolated and purified by DEAE-Sephadex A-25 chromatography, thin-layer chromatography (TLC), C18-cartridges, and high-performance liquid chromatography (HPLC). The structural identification of these metabolites was performed by gas chromatography-mass spectrometry (GC-MS), circular dichroism (CD), and amino acid analysis, and the following amino acid conjugates were found:N-[(–)9,10-dihydrojasmonoyl]valine,N-[(–)9,10-dihydrojasmonoyl]isoleucine,N-[9,10-dihydrojasmonoyl]leucine,N-[11-hydroxy-9,10-dihydrojasmonoyl]valine,N-[11-hydroxy-9,10-dihydrojasmonoyl]isoleucine,N-[12-hydroxy-9,10-dihydrojasmonoyl]isoleucine; and the cucurbic acid-related compoundsN-{[3-hydroxy-2(4-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine andN-{[3-hydroxy-2(5-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine. The results suggest conjugation with isoleucine and valine, as well as preferential hydroxylation at position C-11 or hydrogenation at position C-6, as being important steps in the metabolism of (±)DJA in barley shoots.  相似文献   

11.
Summary The structure-activity data of 6 years on 395 analogs of the luteinizing hormone releasing hormone (LHRH) have been studied to determine effective substituents for the ten positions for maximal antiovulatory activity and minimal histamine release. The numbers of substituents studied in the ten positions are as follows: (41)1-(12)2-(12)3-(5)4-(47)5-(52)6-(16)7-(18)8-(4)9-(8)10. In position 1, DNal and DQal were effective with the former being more frequently the better substituent. DpClPhe was uniquely effective in position 2. Positions 3 and 4 are very sensitive to change. D3Pal in position 3 and Ser in position 4 of LHRH were in the best antagonists. PicLys and cPzACAla were the most successful residues in position 5 with cPzACAla being the better substituent. Position 6 was the most flexible and many substituents were effective; particularly DPicLys. Leu7 was most often present in the best antagonists. In position 8, Arg was effective for both antiovulatory activity and histamine release; ILys was effective for potency and lesser histamine release. Pro9 of LHRH was retained. DAlaNH2 10 was in the best antagonists.Abbreviations AABLys N -(4-acetylaminobenzoyl)lysine - AALys N -anisinoyl-lysine - AAPhe 3-(4-acetylaminophenyl)lysine - Abu 2-aminobutyric acid - ACLys N -(6-aminocaproyl)lysine - ACyh 1-aminocyclohexanecarboxylic acid - ACyp 1-aminocyclopentanecarboxylic acid - Aile alloisoleucine - AnGlu 4-(4-methoxy-phenylcarbamoyl)-2-aminobutyric acid - 2ANic 2-aminonicotinic acid - 6ANic 6-aminonicotinic acid - APic 6-aminopicolinic acid - APh 4-aminobenzoic acid - APhe 4-aminophynylalanine - APz 3-amino-2-pyrazinecarboxylic acid - Aze azetidine-2-carboxylic acid - Bim 5-benzimidazolecarboxylic acid - BzLys N -benzoyllysine - Cit citrulline - Cl2Phe 3-(3,4-dichlorphenyl)alanine - cPzACAla cis-3-(4-pyrazinylcarbonylaminocyclohexyl)alnine - cPmACAla cis-3-[4-(4-pyrimidylcarbonyl)aminocyclohexyl]alanine - Dbf 3-(2-dibenzofuranyl)alanine - DMGLys N -(N,N-dimethylglycyl)lysine - Dpo N -(4,6-dimethyl-2-pyrimidyl)-ornithine - F2Ala 3,3-difluoroalanine - hNal 4-(2-naphthyl)-2-aminobutyric acid - HOBLys N -(4-hydroxybenzoyl)lysine - hpClPhe 4-(4-chlorophenyl)-2-amino-butyric acid - Hse homoserine, 2-amino-4-hydroxybutanoic acid - ICapLys N -(6-isopropylaminocaproyl)lysine - ILys N -isopropyllysine - Ind indoline-2-carboxylic acid - INicLys N -isonicotinoyllysine - IOrn N -isopropylornithine - Me3Arg NG,NG,NG-trimethylarginine - Me2Lys N ,N -dimethyllysine - MNal 3-[(6-methyl)-2-naphtyl]alanine - MNicLys N -(6-methylpicolinoyl)lysine - MPicLys N -(6-methylpicolinoyl)lysine - MOB 4-methoxybenzoyl - MpClPhe N-methyl-3-(4-chlorphenyl)lysine - MPZGlu glutamic acid,-4-methylpiperazine - Nal 3-(2-naphthyl)alanine - Nap 2-naphthoic acid - NicLys N -nicotinoyllysine - NO2B 4-nitrobenzoyl - NO2Phe 3-(4-nitrophenyl)alanine - oClPhe 3-(2-chlorphenyl)alanine - Opt O-phenyl-tyrosine - Pal 3-(3-pyridyl)alanine - 2Pal 3-(2-pyridyl)alanine - 2PALys N -(3-pyridylacetyl)lysine - pCapLys N -(6-picolinoylaminocaproyl)lysine - pClPhe 3-(4-chlorophenyl)alanine - pFPhe 3-(4-fluorophenyl)-alanine - Pic picolinic acid - PicLys N -picolinoyllysine - Pip piperidine-2-car-boxylic acid - PmcLys N -(4-pyrimidylcarbonyl)lysine - Ptf 3-(4-trifluromethyl phenyl)alanine - Pz pyrazinecarboxylic acid - PzAla 3-pyrazinylalanine - PzAPhe 3-(4-pyrazinylcarbonylaminophenyl)alanine - Qal 3-(3-quinolyl)alanine - Qnd-Lys N -quinaldoyllysine - Qui 3-quinolinecarboxylic acid - Qux 2-quinoxalinecarboxylic acid - Tic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid - TinGly 2-thienylglycine - tNACAla trans-3-(4-nicotinoylaminocyclohexyl)-alanine - tPACAla trans-3-(4-picolinoylaminocyclohexyl)alanine  相似文献   

12.
To investigate how vitamin B6 (B6) deficiency affects the whole metabolism of tryptophan-niacin, rats were fed for 19 days with each of the following four kinds of diets; a complete 20% casein diet (control diet), the control diet without B6, the control diet without nicotinic acid, and the control diet without nicotinic acid and B6, and the urinary excretion of such tryptophan metabolites as kynurenic acid, xanthurenic acid, nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone3- carboxamide each and the enzyme activities involved in tryptophan-niacin pathway were measured. The urinary excretion of kynurenic acid decreased while that of xanthurenic acid increased drastically in the two B6-deficient groups, when compared with the B6-containing groups. These results indicate that the rats fed with the B6-free diets were in the vitamin-deficient state. The conversion ratio was calculated from the ratio of the urinary excretion of sum of nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5carboxamide, and N1-methyl-4-pyridone-3-carboxamide, to the Trp intake. The ratio was statistically lower in the B6-free diet than in the B6-containing diet under the niacin-free conditions.  相似文献   

13.
The dipeptidyl peptidase-IV (DPP-IV) inhibitory activity of Khaya senegalensis extracts was evaluated. The DPP-IV from a rat kidney was purified to a purification fold of 2.3. Among extracts from K. senegalensis, the hexane extract had the best DPP-IV inhibitory activity, with IC50 value of 1.56±0.61 μg/mL and was fractionated to eleven fractions (A–K). Fraction I had the best DPP-IV inhibition via uncompetitive pattern. GC-MS analysis of fraction I showed that the major bioactive compounds were 3-amino-3-hydroxyimino-N-phenylpropanamide ( 1 ) and 11-(2-cyclopenten-1-yl)undecanoic acid ( 2 ), with good binding affinities toward DPP-IV, based on molecular docking,. They were then subjected to molecular dynamic simulation using WEBGRO and utilizing a GROMACS system for 100 ns. The 3-amino-3-hydroxyimino-N-phenylpropanamide-DPP-IV complex was more stable and compact than the other complex. K. senegalensis contains compounds like 1 that might be used for the design of new DPP-IV inhibitors.  相似文献   

14.
Rat liver and kidney tissue slices incubated withN-acetyl [3H]mannosamine incorporated radioactivity into free and boundN-acetylneuraminic acid and CMP-N-acetylneuraminic acid (CMP-NeuAc). Liver and kidney also incorporated radioactivity from intravenously injected [3H]ManNAc intoN-acetylneuraminic acid and CMP-NeuAc. From the decrease in the specific radioactivity of CMP-NeuAc after a single injection ofN-acetyl[3H]mannosamine the half-life of CMP-NeuAc was determined. From this half-life and the pool size of CMP-NeuAc a synthesis rate of CMP-NeuAc was calculated, being 1.2 nmol/min/g wet weight of kidney. In previous experiments a value of 1.0 nmol/min/g wet weight was determined for liver [Ferwerdaet al. (1983) Biochem J 216: 87–92]. The synthesis rate of CMP-NeuAcin vivo was in the same range as the synthesis rate calculated from the turnover of boundN-acetylneuraminic acid, which was 2.7 and 0.4 nmol/min/g wet weight for liver and kidney respectively.The assay conditions for UDP-N-acetylglucosamine 2-epimerase andN-acetylmannosamine kinase were adapted to measure low activitiesin vitro. It appeared that the kinase activity detected in kidney can synthesizeN-acetylmannosamine6-phosphate at a rate sufficient for the observed production ofN-acetylneuraminic acidin vivo. Also a low, but measurable activity of UDP-N-acetylglucosamine 2-epimerase was detected in kidneyin vitro, suggesting that the biosynthetic pathway ofN-acetylneuraminic acid in kidney is the same as in liver. The synthesis rate ofN-acetylneuraminic acid in liver determinedin vivo is approximately 12 times slower than the maximal potential rate calculated from the activities of theN-acetylneuraminic acid (precursor-) forming enzymes as detectedin vitro. This indicates that in liverin vivo the enzymes are working far below their maximal capacity.  相似文献   

15.
In the culture supernatant ofTrypanosoma rangeli, strain El Salvador, a sialidase was present with an activity of 0.1 U/mg protein as determined with the 4-methylumbelliferyl glycoside of -N-acetylneuraminic acid as substrate. This enzyme was purified about 700-fold almost to homogeneity by gel chromatography on Sephadex G-100 and Blue Sepharose, and affinity chromatographies on 2-deoxy-2,3-didehydroneuraminic acid and horse submandibular gland mucin, both immobilized on Sepharose. The pH optimum is at 5.4–5.6, and the molecular weight was determined by gel chromatography, high performance liquid chromatography and sodium dodecyl sulphate gel electrophoresis to be 70 000. The substrate specificity of the enzyme is comparable to bacterial, viral and mammalian sialidases with cleavage rates for the following substrates in decreasing order: N-acetylneuraminyl-(2–3)-lactose> N-glycoloylneuraminy-(2–3)-lactose> N-acetylneuraminyl-(2–6)-lactose >sialoglycoproteins>gangliosides>9-O-acetylated sialoglycoproteins.4-O-Acetylated derivatives are resistant towards the action of this sialidase. The enzyme activity can be inhibited by 2-deoxy-2,3-didehydro-N-acetylneuraminic acid, Hg2+ ions, andp-nitrophenyloxamic acid; it is not dependent on the presence of Ca2+ Mn2+ or Mg2+ ions.Abbreviations BSA bovine serum albumin - BSM bovine submandibular gland mucin - CMP cytidine monophosphate - EDIA ethylenediaminetetraacetic acid - ESM equine submandibular gland mucin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HPLC high performance liquid chromatography - Lac lactose - MU-Neu5Ac 4-methylumbelliferyl glycoside of -N-acetylneuraminic acid - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - Neu4Ac5Gc N-glycoloyl-4-O-acetylneuraminic acid - Neu2en 2-deoxy-2,3-didehydroneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - PMSF phenylmethylsulfonyl fluoride - PSM pig submandibular gland mucin - SDS sodium dodecyl sulfate - Tris tris-(hydroxymethyl)aminomethane Dedicated to Professor Dr. Heinz Mühlpfordt on the occasion of his 65th birthday.  相似文献   

16.
Two novel nematicidal cyclodepsipeptides, designated bursaphelocides A and B, were isolated from the culture filtrate of an imperfect fungus, strain D1084, belonging to Mycelia sterilia. Bursaphelocide A (1), containing 2-hydroxy-3-methylpentanoic acid, proline, isoleucine, N-methylalanine, N-methylvaline, and β-alanine in sequence, and bursaphelocide B (2), comprising 4-methylproline instead of proline in 1, are novel 2-hydroxy-3-methylpentanoic acid analogues of insecticidal destruxins.  相似文献   

17.
A novel and convenient method for the synthesis of guanosine is described. The reaction of AICA-riboside with sodium methylxanthate gave 2-mercaptoinosine in almost quantitative yield. The latter was oxidized with hydrogen peroxide to afford inosine-2-sulfonic acids, which was readily animated to give guanosine in excellent yield. Similarly, the preparation of N2-methylguanosine and N2,N2-dimethylguanosine, minor constituents of transfer RNA, was also accomplished. Furthermore, this procedure was extended to the synthesis of 2′,3′-O-isopropylideneguanosine and the isopropylidene derivatives of various N2-substituted guanosines from 2′,3′-O-isopropylidene-AICA-riboside. Guanosine via 2′,3′-O-isopropylideneguanosine was successfully phosphorylated to give 5′-guanylic acid.  相似文献   

18.
The flavin and pyridine nucleotide coenzymes are involved in the detoxication of autoxidation products of lipids. In tryptophan-nicotinamide metabolism, kynurenine 3-hydroxylase and N1-methylnicotinamide (MNA) oxidase contain FAD as a coenzyme. So, the effects of dietary autoxidation products of linoleic acid on the metabolism of tryptophan-nicotinamide were investigated using rats. The administration of linoleic acid hydroperoxides or secondary products reduced the urinary excretion of xanthurenic acid, nicotinamide and its metabolites such as MNA, N1-methyl-2-pyridone-5-carboxamide (2-Py), and N1-methyl-4-pyridone-3-carboxamide (4-Py) as compared with the group administered saline or linoleic acid. Among the enzyme activities involved in the tryptophan-nicotinamide metabolism, the activity of NAD+ synthetase was decreased by the administration of linoleic acid hydroperoxides or secondary products. The activities of tryptophan oxygenase and 4-Py-forming MNA oxidase were also decreased by the administration of secondary products. These results indicate that the conversion of tryptophan to nicotinamide would be lower in the groups administered the hydroperoxides and secondary products than in saline and linoleic acid groups.  相似文献   

19.
Synthetic substance P stimulated adenylate cyclase activity in particulate preparations from rat and human brain.The concentration of substance P for half maximal stimulation in rat brain was 1.8 · 10−7 M.The stimulatory effect of substance P on the rat brain adenylate cyclase activity was 88% compared with 48% by noradrenalin, 163% by prostaglandin E1 and 184% by prostaglandin E2.Both the basal and substance P-stimulated adenylate cyclase activity in rat brain were inhibited by concentration of Ca2+ above 10−6 M.The chelating agent ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid at a concentration of 0.1 mM reduced the basal adenylate cyclase activity by 64% and eliminated the substance P-stimulated activity.The inhibition by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid was completely reversed by increasing concentrations of Ca2+.  相似文献   

20.

Abstract  

When synthesizing arylpiperazine library modified with N-acylated amino acid derivatives (e.g., cyclized aspartic acid, cyclized glutamic acid, proline) we wished to rapidly determine the way of cyclization of N-acylated glutamic acid derivatives. During concomitant cleavage and cyclization two alternative routes were possible—either formation of six-member imide (glutarimide) or five-member lactam. Application of MS/MS and 1H NMR method allowed us to establish that cyclization of N-acylated glutamic acid derivatives preceded to lactams—N-acylated pyroglutamic acid derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号