首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
吡咯喹啉醌研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(PQQ)是继烟酰胺和黄素核苷酸之后发现的氧化还原酶的第3种辅酶,具有多种生理功能,在食品、医药及农业等行业有广泛的应用前景。我们简要综述了PQQ参与醌酶电子传递、增强微生物对极端环境的适应能力、促进植物生长、刺激神经生长因子生成等生物学功能及相关作用机制,介绍了PQQ生产菌、PQQ合成基因及PQQ生物合成的调控等方面的研究进展。  相似文献   

2.
吡咯喹啉醌及其生理功能   总被引:7,自引:0,他引:7  
吡咯喹啉醌(PQQ)──一种新的氧化还原酶辅基,存在于一些微生物、植物和动物组织中,参与催化生物体内氧化还原反应。研究表明PQQ具有一些重要生理功能:刺激某些植物发育及微生物和人体细胞生长;作为动物体生长发育的必需因子;清除自由基保护机体免受自由基损害;防治肝损伤;促进神经生长因子合成等。因此,PQQ具有一定的医药应用前景。  相似文献   

3.
微生物硫代谢及其驱动下建立的生物生态关系   总被引:1,自引:0,他引:1  
硫在环境中广泛存在,是生物细胞的主要构成元素,微生物、动物和植物的硫基础代谢途径之间存在着广泛联系。本文以微生物硫代谢为主线,全面总结了硫在3类生物中的4条主要代谢途径,并重点阐明了其共性、区别及联系。微生物参与了所有硫的主要代谢,是驱动硫生物循环的主要动力。微生物异化硫还原降低了环境中甲烷的挥发,微生物、植物实施的同化性硫还原为动物提供了大量有机硫源,而植物、动物则选择性地缺少了异化或同化硫还原;硫氧化在3种生物中普遍存在且路线相似,其中,硫转移酶对氧化产物的多样化起到了重要的调节功能;发生在植物中的硫矿化尚不太清楚,而微生物、动物的硫矿化为植物硫同化提供了新的无机硫底物。自然界中,肠道微生物和宿主动物、根际微生物与植物根、动植物腐败后微生物的矿化、环境中微生物的氧化和还原等依托硫的代谢建立的生态关系,极大程度促进了硫元素的生物地球化学循环。  相似文献   

4.
吡咯喹啉醌生物合成研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(PQQ)是一种较新近发现的氧化还原酶的辅酶,对微生物及动植物均具有重要生理作用。已知能产生PQQ的生物仅限于某些革兰阴性细菌,已分离得到几种不同来源的PQQ生物合成基因,其序列具有一定的保守性。PQQ的生物合成涉及4~7个基因,这些基因一般成簇排列。业已证明,谷氨酸和酪氨酸是PQQ合成的前体物质。对各个基因的功能已有不同程度的了解,但PQQ的生物合成途径还尚未阐明。  相似文献   

5.
植食性哺乳动物与植物协同进化研究进展   总被引:9,自引:1,他引:8  
李俊年  刘季科 《生态学报》2002,22(12):2186-2193
从动物-植物协同进化模式,植物对动物采食反应及动物对植物防卫的适应对策等方面综述了以植物次生化合物为媒介的植食性哺乳动物-植物协同进化的研究进展,动物与植物的协同进化模式包括成对协同进化,扩散协同进化,躲避-辐射协同进化,多样性的协同进化,平行分枝进化,互惠进化等模式,植物不仅以超补偿反应,物理防卫作为对植食性动物采食的应答,延长植食性动物的觅食时间,降低植食性动物的觅食效率,更能以其派生的次生化合物抑制动物的摄食,进而影响其消化,代谢及生长等生理生态特征,动物通过改变觅食行为,调整对各食物项目的相对摄入量,减少次生化合物的摄入量,动物还通过氧化,还原,络合,改变消化道内环境,形成相应的降解酶,改变代谢率等途径降低次生化合物对其的负作用。  相似文献   

6.
湿地土壤硫(S)的氧化-还原过程是硫循环的重要环节,其对于维持湿地系统的稳定与健康具有重要意义。本文综述了湿地土壤S的氧化-还原过程及影响因素,并分析了其与其他元素耦合机制的研究进展。湿地土壤S氧化-还原过程的影响因素主要涉及生物因子(植物、微生物、底栖动物及人类活动等)和非生物因子(温度、水分和粒度等物理因素及pH、盐度、有机质等化学因素),而其与其他元素的耦合作用主要涉及碳(C)、氮(N)、磷(P)等生源元素以及铁(Fe)、锰(Mn)等金属元素。鉴于当前湿地土壤S氧化-还原过程影响机制揭示不深入、耦合作用研究不均衡及生态效应探讨不充分等问题,未来应重点加强S氧化-还原过程的关键功能微生物研究,强化其与痕量元素迁移转化的耦合机理研究,重视其与其他元素耦合作用的生态效应研究。  相似文献   

7.
万慧  康振  李江华  周景文 《微生物学报》2016,56(10):1656-1663
【目的】研究高浓度的2-KLG对其生产菌株氧化葡萄糖酸杆菌生产过程中关键的脱氢酶合成基因、辅因子合成基因及其转运蛋白编码基因的影响。【方法】测定高浓度梯度2-KLG下氧化葡萄糖酸杆菌的生长情况,确定合适的添加浓度对氧化葡萄糖酸杆菌进行胁迫。使用实时定量PCR技术检测2-KLG合成中关键山梨醇脱氢酶基因sld AB、关键辅因子PQQ合成基因pqq ABCDE及5个潜在转运蛋白合成基因的变化。【结果】根据氧化葡萄糖酸杆菌在2-KLG高浓度梯度下生长测定实验结果,选定40、80和120 g/L 2-KLG作为添加浓度。实时定量PCR结果显示,在高浓度的2-KLG压力下,PQQ合成基因pqq ABCDE未受到显著影响,山梨醇脱氢酶基因sld AB以及部分PQQ潜在转运蛋白编码基因的表达均显著下调。【结论】高浓度2-KLG会抑制氧化葡萄糖酸杆菌中山梨醇脱氢酶基因的表达,有可能会影响辅酶PQQ的转运,但不会显著影响辅酶PQQ的合成。  相似文献   

8.
含硒酶与非酶作用机制   总被引:2,自引:0,他引:2  
黄峙  郭宝江 《生命科学》2002,14(2):99-102,69
在微生物、植物和动物体内,硒的功能形式多种多样,但其作用机制可归纳为酶与非酶两个方面,含硒酶的作用主要有:谷胱甘肽过氧化物酶(GPx)家族催化超氧化物还原,防止细胞膜的氧化损伤;脱磺酶(ID)家族调节甲状腺激素代谢,硫氧还蛋白还原酶(TDR)家族催化硫氧还蛋白(Trx)还原,TDR/Trx系统为细胞的生长和分化所必需,硒的非酶化学保护作用体现在:可诱导一些蛋白激酶的富半胱氨酸结构域发生氧化还原修饰,增强免疫功能等作用,硒在植物中的作用机制具有许多特殊性。  相似文献   

9.
吡咯喹啉醌生理医学功效研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(PQQ)是一种小分子醌类化合物,由某些细菌合成作为细菌脱氢酶氧化还原反应的辅助因子,并广泛存在于各种生物组织中。综述了其在生理医学功效方面的研究进展情况,分析其在神经退行性疾病、心脏病、解毒、消炎、抗癌、预防白内障及骨代谢疾病等方面的临床应用潜力,并对其未来在水生生物生理生态学领域的研究方向进行了展望。  相似文献   

10.
植物细胞质膜氧化还原系统   总被引:4,自引:0,他引:4  
从研究材料、实验方法、氧化还原活性、氧化还原组分以及生理功能等方面介绍70年代末发现的植物细胞质膜氧化还原系统的研究进展。此系统与铁和溶质的吸收、细胞的生长、细胞对蓝光的反应等生理过程有密切的关系,它是质膜H~+-ATPase外的另一能量转换系统。  相似文献   

11.
Physiologic importance of pyrroloquinoline quinone.   总被引:2,自引:0,他引:2  
Pyrroloquinoline quinone (PQQ, methoxatin) is a dissociable cofactor for a number of bacterial dehydrogenases. The compound is unusual because of its ability to catalyze redox cycling reactions at a high rate of efficiency and it has the potential of catalyzing various carbonyl amine reactions as well. In methylotrophic bacteria, PQQ is derived from the condensation of L-tyrosine with L-glutamic acid. Whether or not PQQ serves as a cofactor in higher plants and animals remains controversial. Nevertheless, a strong case may be made that PQQ and related quinoids have nutritional and pharmacologic importance. In highly purified, chemically defined diets, PQQ stimulates animal growth. Furthermore, PQQ deprivation appears to impair connective tissue maturation, particularly when initiated in utero and throughout perinatal development.  相似文献   

12.
In order to demonstrate the presence or absence of a pyrroloquinoline quinone (PQQ) synthesizing capacity in microorganisms, we have found that media and equipment must be treated to remove contaminating PQQ. Procedures are described which appear to be effective for that purpose. These have been used with Acinetobacter calcoaceticus PQQ- strains to develop a sensitive and reliable assay for PQQ. They also have been used to show that under our conditions of growth Escherichia coli does not synthesize PQQ. Fluorescence spectroscopy is not selective enough to detect PQQ in a protein hydrolysate due to background fluorescence in the same spectral regions as PQQ. In addition, PQQ reacts with amino acids to give products that cannot be detected by either fluorescence spectroscopy or biological assay. In this regard, claims that several materials originating from plants or animals contain PQQ should be reexamined. Moreover, PQQ cannot be detected with these methods in hydrolysates of enzymes containing covalently bound PQQ.  相似文献   

13.
Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological processes, as a nutrient and a perspective vitamin.  相似文献   

14.
PQQ and quinoprotein enzymes in microbial oxidations   总被引:1,自引:0,他引:1  
Abstract Pyrroloquinoline quinone (PQQ) is found in a wide range of microorganisms, and several bacteria even excrete this compound into their culture medium when grown on alcohols. The existence of different classes of quinoprotein (PQQ-containing) enzymes is now well established (alcohol dehydrogenases, aldose (glucose) dehydrogenases, amine dehydrogenases and amine oxidases) while several other enzymes are suspected to be quinoproteins. In addition, many bacteria produce a quinoprotein apoenzyme, e.g., Escherichia coli and Pseudomonas testosteroni , producing glucose and ethanol dehydrogenase apoenzyme, respectively. It is unclear why these bacteria do not produce the holoenzyme form, but the apoenzymes have the ability to become functional, as was shown when the organisms were provided with PQQ. With this approach it could be demonstrated that E. coli has a non-phosphorylative route of glucose dissimilation via gluconate. Also, results with mixed cultures indicate that PQQ is a growth factor for certain bacteria under certain conditions. Despite the relatively high redox potential of the PQQ/PQQH2 couple, quinoproteins transfer electrons to a variety of natural electron acceptors. Depending on the type of quinoprotein enzyme, the following components of the respiratory chain appear to be active: cytochrome c (sometimes with a copper protein as an intermediate), cytochrome b , and NADH dehydrogenase. PQQ is not restricted to a particular group of organisms, and reactions catalysed by quinoproteins can also be performed by NAD(P)-dependent or flavoprotein enzymes. Thus, these observations do not provide arguments for the view that quinoproteins have a unique role in microbial oxidations. Further comparative studies on oxidoreductases are necessary to reveal the special features of this novel group of enzymes.  相似文献   

15.
Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein   总被引:5,自引:0,他引:5  
Pyrroloquinoline quinone (PQQ) is a noncovalently bound cofactor in the bacterial oxidative metabolism of alcohols. PQQ also exists in plants and animals. Due to its inherent chemical feature, namely its free-radical scavenging properties, PQQ has been drawing attention from both the nutritional and the pharmacological viewpoint. alpha-Synuclein, a causative factor of Parkinson's disease (PD), has the propensity to oligomerize and form fibrils, and this tendency may play a crucial role in its toxicity. We show that PQQ prevents the amyloid fibril formation and aggregation of alpha-synuclein in vitro in a PQQ-concentration-dependent manner. Moreover, PQQ forms a conjugate with alpha-synuclein, and this PQQ-conjugated alpha-synuclein is also able to prevent alpha-synuclein amyloid fibril formation. This is the first study to demonstrate the characteristics of PQQ as an anti-amyloid fibril-forming reagent. Agents that prevent the formation of amyloid fibrils might allow a novel therapeutic approach to PD. Therefore, together with further pharmacological approaches, PQQ is a candidate for future anti-PD reagent compounds.  相似文献   

16.
Pyrroloquinoline quinone (PQQ), a putative essential nutrient and redox modulator in microorganisms, cell and animal models, has been recognized as a growth promoter in rodents. Growth performance, carcass yield and antioxidant status were evaluated on broiler chickens fed different levels of PQQ disodium (PQQ.Na2). A total of 784 day-old male Arbor Acres (AA) broilers were randomly allotted into seven dietary groups: negative control group (NC) fed a basal diet without virginiamycin (VIR) or PQQ.Na2; a positive control group (PC) fed a diet with 15 mg of VIR/kg diet; and PQQ.Na2 groups fed with 0.05, 0.10, 0.20, 0.40 or 0.80 mg PQQ.Na2/kg diet. Each treatment contained eight replicates with 14 birds each. The feeding trial lasted for 6 weeks. The results showed that chicks fed 0.2 mg PQQ.Na2/kg diet significantly improved growth performance comparable to those in PC group, and the feed efficiency enhancement effects of dietary PQQ.Na2 was more apparent in grower phase. Dietary addition of PQQ.Na2 had the potential to stimulate immune organs development, and low level dietary addition (<0.1 mg/kg) increased plasma lysozyme level. Broilers fed 0.2 mg PQQ.Na2/kg diet gained more carcasses at day 42, and had lower lipid peroxide malondialdehyde content and higher total antioxidant power in plasma. The results indicated that dietary PQQ.Na2 (0.2 mg/kg diet) had the potential to act as a growth promoter comparable to antibiotic in broiler chicks.  相似文献   

17.
The ability of some bacteria to dissolve poorly soluble calcium phosphates (CaPs) has been termed 'mineral phosphate solubilizing' (MPS). Since most microorganisms and plants must assimilate P via membrane transport, biotransformation of CaP into soluble phosphate is considered an essential component of the global P cycle. In many Gram-negative bacteria, strong organic acids produced in the periplasm via the direct oxidation pathway have been shown to dissolve CaP in the adjacent environment. Therefore, the quinoprotein glucose dehydrogenase (PQQGDH) may function in the ecophysiology of many soil bacteria. There is interest in using MPS bacteria for industrial bioprocessing of rock phosphate ore (a substituted fluroapatite) or even for direct inoculation of soils as a 'biofertilizer' analogous to nitrogen fixation. Our laboratory has spent 20 years studying superior MPS bacteria. Screening genomic libraries in the appropriate E. coli genetic background can 'trap' PQQ or GDH genes from these bacteria via functional complementation. In setting the 'trap' for PQQ genes, we have identified DNA fragments that apparently induce PQQGDH activity in E. coli with no sequence homology to known PQQ genes. These data suggest that E. coli may have an alternative, inducible PQQ biosynthesis pathway. Finally, a novel protein engineering strategy to increase the catalytic rate of PQQGDH has emerged and will be discussed.  相似文献   

18.
Abstract

Pyrroloquinoline quinone (PQQ), a bacterial redox co-factor and antioxidant, is highly reactive with nucleophilic compounds present in biological fluids. PQQ induced apoptosis in human promonocytic leukemia U937 cells and this was accompanied by depletion of the major cellular antioxidant glutathione and increase in intracellular reactive oxygen species (ROS). Treatment with glutathione (GSH) or N-acetyl-L-cysteine (NAC) did not spare PQQ toxicity but resulted in a 2–5-fold increase in PQQ-induced apoptosis in U937 cells. Cellular GSH levels increased following treatment by NAC alone but were severely depleted by co-treatment with NAC and PQQ. This was accompanied by an increase in intracellular ROS. Alternatively, depletion of glutathione also resulted in increased PQQ cytotoxicity. However, the cells underwent necrosis as evidenced by dual labeling with annexin V and propidium iodide. PQQ-induced cytotoxicity is thus critically regulated by the cellular redox status. An increase in GSH can augment apoptosis and its depletion can switch the mode of cell death to necrosis in the presence of PQQ. Our data suggest that modulation of intracellular GSH can be used as an effective strategy to potentiate cytotoxicity of quinones like PQQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号