首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化   总被引:11,自引:1,他引:10  
龚伟    胡庭兴    王景燕  宫渊波  冉华 《生态学报》2008,28(6):2536-2536~2545
对川南天然常绿阔叶林及其人工更新成檫木林、柳杉林和水杉林后土壤不同形态碳素含量、碳库管理指数、养分含量和酶活性进行研究,并探讨了土壤不同形态碳素及碳库管理指数与土壤肥力之间的关系.结果表明:各季节土壤有机碳、水溶性有机碳、微生物量碳、活性有机碳、稳定态碳、碱解氮、有效磷和速效钾含量及蔗糖酶、磷酸酶和过氧化氢酶活性均为天然常绿阔叶林>檫木林>水杉林>柳杉林,土壤碳库管理指数也为天然常绿阔叶林>檫木林>水杉林>柳杉林,且土壤不同形态碳素含量和碳库管理指数与土壤养分含量及酶活性之间存在显著的相关关系.这说明了天然常绿阔叶林人工更新后土壤不同形态碳素含量、碳库管理指数和土壤肥力下降,且各人工林下降程度不同,而且土壤不同形态碳素含量和碳库管理指数的变化能够较好地表征土壤肥力的变化.研究结果为保护天然常绿阔叶林、选择适宜的更新树种和天然常绿阔叶林人工更新后林地土壤的科学管理提供依据,也为退耕还林中树种的选择提供参考.  相似文献   

2.
 运用分形模型研究了川南天然常绿阔叶林及其人工更新成檫木(Sassafras tzumu)林 、柳杉(Cryptomeria fortunei)林和水杉(Metasequoia glyptostroboides)林后土壤团粒结构,探讨了分形维数与林地土壤水源涵养功能、肥力特征和微生物数量之间的关系。结果表明:天然常绿阔 叶林人工更新后土壤团粒结构的分形维数和结构体破坏率增大、土壤物理性质变差、养分含量和微生物数量降低,3种人工林中,檫木林较好、 水杉林次之、柳杉林最差;土壤团聚体、水稳性团聚体和水稳性大团聚体含量越高分形维数越小;在湿筛条件下, 土壤结构体破坏率随分形维 数的降低而减小;土壤团粒结构的分形维数与土壤物理性质、养分含量和微生物数量之间存在显著的回归关系。这表明天然常绿阔叶林人工更 新后由于不同林分对林地土壤组成结构的维护效果不同,导致更新后林地土壤物理、化学和生物性质变化 ,林地土壤团粒结构的变化,进而影 响其分形维数的大小。因此,分形维数可作为天然常绿阔叶林及其人工更新后林地土壤水源涵养功能、肥力特征和微生物活动情况的一项综合 性定量化评价指标。同时,为保护天然常绿阔叶林、选择适宜的更新树种和天然常绿阔叶林人工更新后林地土壤的科学管理提供依据,也为退 耕还林中树种的选择提供参考。  相似文献   

3.
研究了湖南省会同县森林植被从地带性植被天然常绿阔叶林到杉木人工林再到杉木火力楠混交林的转变过程中土壤微生物生物量碳和酶活性的变化趋势。结果表明:杉木纯林和混交林土壤微生物生物量碳含量均显著低于常绿阔叶林,分别仅为常绿阔叶林的76.8%和71.5%;与天然阔叶林相比,杉木人工林土壤蔗糖酶、脲酶和磷酸酶活性分别降低了35.8%、22.1%和45.1%,而多酚氧化酶活性增高了40.0%;相反,杉木火力楠混交林土壤蔗糖酶、脲酶和磷酸酶活性比杉木纯林分别增加了20.3%、12.6%和67.8%,而土壤多酚氧化酶活性则降低了41.0%;表明森林植被转变对土壤微生物生物量碳和土壤酶活性能够产生较大的影响,不同的树种对土壤微生物生物量碳和土壤酶活性的影响差异较大。  相似文献   

4.
武夷山不同海拔典型植被带土壤酶活性特征   总被引:10,自引:0,他引:10  
在武夷山自然保护区不同海拔4个典型植被带(常绿阔叶林、针叶林、亚高山矮林以及高山草甸)采集土壤样品,分析了脲酶、蔗糖酶、酸性磷酸酶和过氧化氢酶4种主要土壤酶活性的变化.结果表明:除磷酸酶外,武夷山不同海拔植被带土壤酶活性没有显著的季节差异,磷酸酶活性秋季显著高于其他季节;不同海拔土壤酶活性差异显著,海拔与季节对土壤酶活性无交互影响;土壤酶活性随海拔升高总体上呈上升趋势,高海拔草甸的土壤酶活性显著高于低海拔林地土壤;土壤酶活性具有明显的垂直分层分布,土层越深酶活性越低;4个植被带土壤脲酶活性为1.28 ~3.87 mg·g-1·24h-1,高山草甸>常绿阔叶林>亚高山矮林>针叶林;蔗糖酶活性为36.18 ~244.08 mg·g-1·24 h-1,高山草甸>针叶林>常绿阔叶林>亚高山矮林;磷酸酶活性和过氧化氢酶活性分别为0.18~0.62 mg·g-1 ·2 h-1和1.78 ~1.98 ml·g-1·20 min-1,高山草甸>针叶林>亚高山矮林>常绿阔叶林;土壤酶活性与土壤总有机碳、全氮显著正相关;与土壤温度、湿度、pH相关性比较复杂.  相似文献   

5.
三峡库区不同植被类型土壤养分特征   总被引:24,自引:6,他引:18  
通过三峡库区8个植被类型370个样地的群落调查和土壤分析,研究了不同植被类型、土壤类型、海拔对表层土壤有机质及全氮、速效磷、速效钾含量的影响.结果表明:(1)三峡库区不同植被类型土壤有机质、全氮平均含量规律为阔叶林>竹林>针叶林>灌丛>草丛,森林土壤有机质及全氮平均含量丰富;速效磷平均含量表现为草丛>落叶阔叶林>灌丛>暖性针叶林>常绿落叶阔叶混交林>温性针叶林>竹林>常绿阔叶林,草丛与其他植被类型差异显著;速效钾平均含量表现为常绿落叶阔叶混交林>落叶阔叶林>灌丛>针叶林>竹林>草丛>常绿阔叶林,竹林、草丛、常绿阔叶林与常绿落叶阔叶混交林、落叶阔叶林、灌丛、针叶林差异显著.(2)不同土壤类型养分含量差异显著,黄棕壤中有机质、全氮含量高,分别为6.83%、0.44%,紫色土中速效磷含量高,达到54.24mg/kg.(3)随海拔升高,有机质、全氮含量呈明显增加趋势,速效磷、速效钾含量变化趋势不明显.  相似文献   

6.
研究了湖南会同红黄壤区杉木人工林和常绿阔叶林土壤微生物量和养分状况.结果表明,该区杉木人工林取代地带性常绿阔叶林和杉木连栽后,土壤微生物碳、氮和土壤养分含量下降,土壤严重退化.在0~10 cm土层内,常绿阔叶林土壤微生物碳和氮含量为800.5和84.5 mg·kg-1,分别是第1代杉木林的1.90和1.03倍、第2代杉木林的2.16和1.27倍;在10~20 cm土层内,常绿阔叶林土壤微生物碳和氮含量为475.4和63.3 mg·kg-1,分别是第1代杉木纯林的1.86、1.60倍和第2代杉木林的2.11和1.76倍.在0~10 cm 和10~20cm土层内,杉木人工林取代常绿阔叶林和杉木栽植代数增加后,土壤全氮、全钾、铵态氮和速效钾含量均明显降低,但差异并不显著.人工杉木林林分组成单一,其凋落物分解慢、归还养分数量少;炼山等造成的表土流失是杉木人工林土壤微生物量和养分库退化的重要原因.土壤微生物碳与土壤全氮、铵态氮、全钾和速效钾含量呈极显著的正相关,土壤微生物氮与土壤养分含量也达到极显著水平.  相似文献   

7.
采用原位培养法和时空替代法,对江西中部亚热带常绿阔叶林、天然马尾松林、人工杉木林、人工马褂木林的土壤氮素矿化速率及其有效性进行了比较研究,以探讨森林转换对土壤氮素矿化作用的影响。结果表明:转换前后各森林土壤无机氮库(NH4 -N、NO3--N)及氮素矿化速率(氨化速率、硝化速率)均呈现明显的季节动态,NH4 -N库冬春较大,NO3--N库夏秋较大,氨化速率与硝化速率均以夏秋强烈。森林转换改变了土壤氮素矿化格局,常绿阔叶林转变成马尾松林、杉木林、马褂木林后,土壤年均氨化速率分别降低了110.67%、100.76%、96.20%,而硝化速率提高了54.92%、24.19%、 24.46%;马尾松林年均总净矿化速率与常绿阔叶林相近,杉木林、马褂木林分别降低了24.68%、26.01%;另外,除常绿阔叶林外,马尾松林、杉木林、马褂木林的土壤氮素矿化量都小于植被吸收量。这些研究结果说明亚热带地区常绿阔叶林转换成其它次生林会增加氮素流失的危险性,氮素缺乏会成为这些森林生长的限制因子。  相似文献   

8.
杨秀清  韩有志  李乐  陈欣  游静 《生态学报》2009,29(9):4656-4664
在华北山地典型天然次生林中选择研究样地,应用地统计学理论和格局分析方法,定量分析林分土壤氮素空间异质性特征,探测更新幼苗空间格局特征;依据协同变异函数理论模型参数,定量估计土壤氮素营养空间异质性与落叶松更新格局之间的空间关联性,探讨土壤氮素空间变异对落叶松幼苗更新格局的影响程度.研究结果表明:(1)无论是以华北落叶松为优势树种的寒温性针叶林,还是以白桦和山杨为优势树种的山地阔叶林,不同空间样点间土壤氮素总量及速效态氮素均存在很大差异.阔叶林中,硝态氮在整个研究样地尺度(>70.71m)上表现出很强的空间自相关性(结构因素所占比重为81.5%).针叶林中,硝态氮则在相对小的尺度范围(47.90m)呈现更明显的空间自相关变异.且阔叶林中土壤氮含量显著地高于针叶林.(2)华北落叶松苗更新空间分布格局呈明显的集聚分布.更新的空间格局变异主要由空间自相关因素引起(针叶林为77.4%,阔叶林为85.2%),随机变异占的比例较低(分别为22.6%和14.8%).(3)阔叶林土壤氮含量相对高,更新与氮素的空间关联性不明显,与全氮的协同变异呈随机性(R2=0.078).针叶林土壤氮含量相对低,更新与氮素的空间关联性明显,与全氮的协同变异呈现明显的空间自相关性,氮素空间异质性对更新格局与过程具有更重要的影响.整个研究样地水平上,硝态氮与更新的协同变异呈现明显的空间自相关性(空间结构比为59.4%~77.7%).NO-3-N含量较高或铵、硝态氮的比例较低的土壤环境中,更新苗发生数量较多.  相似文献   

9.
为了解不同植被类型对土壤微生物生物量和土壤酶活性的影响,以黄土高原纸坊沟流域的9种植物为研究对象,选取撂荒地为参照,分析了各类植被植物根际土土壤微生物生物量、土壤酶活性及其与土壤理化因子的相关性.结果显示:(1)与撂荒地相比,经过植被恢复后,乔木和灌木植被下土壤肥力、微生物生物量和土壤酶活性均有所提高,而草本植被下土壤的碱解氮含量、微生物生物量磷、脲酶活性和过氧化氢酶活性却有所降低.(2)不同植被类型土壤微生物生物量碳和氮、蔗糖酶和碱性磷酸酶活性符合灌木>乔木>草本的规律;土壤微生物生物量磷、脲酶和过氧化氢酶活性符合乔木>灌木>草本的规律.(3)土壤微生物生物量碳、氮、磷与土壤有机质、全氮及全磷含量呈极显著正相关;4种土壤酶活性与土壤有机质、全氮及碱解氮含量呈极显著正相关.研究表明,黄土高原纸坊沟流域土壤微生物生物量和土壤酶活性受植被类型及土壤养分等因素的共同影响,且人工灌木植被对土壤的恢复作用高于乔木和草本植被.  相似文献   

10.
张鼎华  林肖文 《生态学报》1993,13(3):261-266
本文连续3a分析比较了采伐迹地恢复阔叶林和人工种植杉木林土壤肥力变化的差异。结果表明:在人工栽杉3a内,杉木林土壤水分含量和有效水含量下降,土壤干湿交替变化增大,水分物理性状变差,土壤水稳性团聚体含量降低,结构体破坏率增大,而阔叶林则呈上升趋势。杉木林下土壤微生物数量在造林3a内呈不断下降趋势,而阔叶林则呈增加趋势;杉木林土壤氧化还原酶活性弱于阔叶林,水解酶活性强于阔叶林,两种酶系活性在3a内阔叶林增强,杉木林减弱;阔叶林土壤养分在3a内不断提高,杉木林土壤不断下降。  相似文献   

11.
High rates of deforestation in the Brazilian Amazon have the potential to alter the storage and cycling of carbon (C) and nitrogen (N) across this region. To investigate the impacts of deforestation, we quantified total aboveground biomass (TAGB), aboveground and soil pools of C and N, and soil N availability along a land-use gradient in Rondônia, Brazil, that included standing primary forest, slashed primary and secondary forest, shifting cultivation, and pasture sites. TAGB decreased substantially with increasing land use, ranging from 311 and 399 Mg ha–1 (primary forests) to 63 Mg ha–1 (pasture). Aboveground C and N pools declined in patterns and magnitudes similar to those of TAGB. Unlike aboveground pools, soil C and N concentrations and pools did not show consistent declines in response to land use. Instead, C and N concentrations were strongly related to percent clay content of soils. Concentrations of NO3-N and NH4-N generally increased in soils following slash-and-burn events along the land-use gradient and decreased with increasing land use. Increasing land use resulted in marked declines in NO3-N pools relative to NH4-N pools. Rates of net nitrification and N-mineralization were also generally higher in postfire treatments relative to prefire treatments along the land-use gradient and declined with increasing land use. Results demonstrate the linked responses of aboveground C and N pools and soil N availability to land use in the Brazilian Amazon; steady reductions in aboveground pools along the land-use gradient were accompanied by declines in inorganic soil N pools and transformation rates.  相似文献   

12.
Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long‐term N fertilization experiment to explore the sensitivity of soil C to increased N in two N‐rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher Δ14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N‐rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long‐term stability of this added C will likely depend on future changes in temperature.  相似文献   

13.
The availability of nitrogen (N) is a critical control on the cycling and storage of soil carbon (C). Yet, there are conflicting conceptual models to explain how N availability influences the decomposition of organic matter by soil microbial communities. Several lines of evidence suggest that N availability limits decomposition; the earliest stages of leaf litter decay are associated with a net import of N from the soil environment, and both observations and models show that high N organic matter decomposes more rapidly. In direct contrast to these findings, experimental additions of inorganic N to soils broadly show a suppression of microbial activity, which is inconsistent with N limitation of decomposition. Resolving this apparent contradiction is critical to representing nutrient dynamics in predictive ecosystem models under a multitude of global change factors that alter soil N availability. Here, we propose a new conceptual framework, the Carbon, Acidity, and Mineral Protection hypothesis, to understand the effects of N availability on soil C cycling and storage and explore the predictions of this framework with a mathematical model. Our model simulations demonstrate that N addition can have opposing effects on separate soil C pools (particulate and mineral‐protected carbon) because they are differentially affected by microbial biomass growth. Moreover, changes in N availability are frequently linked to shifts in soil pH or osmotic stress, which can independently affect microbial biomass dynamics and mask N stimulation of microbial activity. Thus, the net effect of N addition on soil C is dependent upon interactions among microbial physiology, soil mineralogy, and soil acidity. We believe that our synthesis provides a broadly applicable conceptual framework to understand and predict the effect of changes in soil N availability on ecosystem C cycling under global change.  相似文献   

14.
In semi-arid grassland ecosystems, soil biogeochemical processes are controlled by seasonal and inter-annual rainfall variation and temperature, which may override the long-term impact of grazers on N availability and N dynamics. In a three-year (2004?C2006) case study of an Inner Mongolian grassland, we analysed time-integrated (ion-exchange resins) and instantaneous (soil mineral N extractions) inorganic N availability at three sites of varying grazing intensities and combined these data with information on soil water content (SWC), aboveground net primary productivity (ANPP) and plant N uptake. Additionally, the effects of rainfall and grazing on N-form availability (NO 3 ? -N, NH 4 + -N) were considered. Grazing had less impact on N availability compared to seasonal and annual rainfall distribution. One of the three study years (2004) showed a grazing effect with higher resin-N availability at the ungrazed site compared to the heavily grazed site. Inorganic N availability was low in the driest year (2005) and highest in a year of average rainfall amount and favourable distribution (2004). In general, we found a positive relationship between inorganic N availability and both plant productivity and plant N uptake. Rainfall also controlled the plant available NO 3 ? -N and NH 4 + -N pools; NH 4 + -N dominated the available inorganic N-form in times of low SWC, while the available NO 3 ? -N increased with SWC. We observed N availability and plant productivity in a temporal synchronized pattern. Increased rainfall variability and land-use practices affecting SWC will likely alter N availability dynamics (and the relation of N-forms) and, therefore, important processes of semi-arid natural grassland carbon and N cycling.  相似文献   

15.
Many rangelands around the world are degraded by severe overgrazing with resulting loss of nutrients and reduced productivity. However, grazing may also increase nutrient cycling and enhance ecosystem productivity. The aim of this study was to determine effects of grazing on availability of nitrogen (N), sources of N utilized by plants and cycling and distribution of N at a low-alpine site, Southern Norway. The study was part of a sheep grazing experiment with three density levels of sheep (no sheep, 25 km?2 and 80 km?2) since 2001. The N-content of plants was determined in June 2008, August 2008 and August 2009. Indirect effects of herbivory on sources of N and N-cycling were assessed by δ15N natural abundance and the system’s distribution of added 15NH4-N. We found little evidence for grazing induced effects on availability, sources or cycling of N based on N content of plants and δ15N natural abundance. The organic soil horizon was the largest sink for the added 15NH4-N. Proportional tracer recoveries and tracer enrichments indicate a somewhat greater N cycling at grazed than at non-grazed sites. We conclude that the experimental levels of grazing have limited impact on distribution and cycling of N and thus represent sustainable ecosystem management in terms of N dynamics in the long-term.  相似文献   

16.
17.
Ecosystem and soil scientists frequently use whole soil carbon:nitrogen (C : N) ratios to estimate the rate of N mineralization from decomposition of soil organic matter (SOM). However, SOM is actually composed of several pools and ignoring this heterogeneity leads to incorrect estimations since the smaller pools, which are usually the most active, can be masked by the larger pools. In this paper, we add new evidence against the use of C : N ratios of the whole soil: we show that a disturbance can decrease the whole‐soil C : N ratio and yet increase C : N ratios of all SOM pools. This curious numerical response, known as Simpson's paradox, casts doubt on the meaning of frequently reported whole‐soil C : N changes following a disturbance, and challenges the N mineralization estimates derived from whole‐soil C : N ratio or single‐pool modeling approaches. Whole‐soil C : N ratio may not only hide features of the labile SOM pool, but also obscure changes of the large recalcitrant SOM pools which determine long‐term N availability.  相似文献   

18.
Species richness (SR) and functional group richness (FGR) are often confounded in both observational and experimental field studies of biodiversity and ecosystem function. This precludes discernment of their separate influences on ecosystem processes, including nitrogen (N) cycling, and how those influences might be moderated by global change factors. In a 17‐year field study of grassland species, we used two full factorial experiments to independently vary SR (one or four species, with FGR = 1) and FGR (1–4 groups, with SR = 4) to assess SR and FGR effects on ecosystem N cycling and its response to elevated carbon dioxide (CO2) and N addition. We hypothesized that increased plant diversity (either SR or FGR) and elevated CO2 would enhance plant N pools because of greater plant N uptake, but decrease soil N cycling rates because of greater soil carbon inputs and microbial N immobilization. In partial support of these hypotheses, increasing SR or FGR (holding the other constant) enhanced total plant N pools and decreased soil nitrate pools, largely through higher root biomass, and increasing FGR strongly reduced mineralization rates, because of lower root N concentrations. In contrast, increasing SR (holding FGR constant and despite increasing total plant C and N pools) did not alter root N concentrations or net N mineralization rates. Elevated CO2 had minimal effects on plant and soil N metrics and their responses to plant diversity, whereas enriched N increased plant and soil N pools, but not soil N fluxes. These results show that functional diversity had additional effects on both plant N pools and rates of soil N cycling that were independent of those of species richness.  相似文献   

19.
Perturbations such as wildfire and exotic plant invasion have significant impacts on soils, and the extent to which invaded soils are resistant or resilient to these disturbances varies by ecosystem type. Replacement of shrublands by herbaceous exotics pre- and post-wildfire may drastically alter soil chemical and biological properties for an unknown duration. We assessed above and belowground resistance and resilience to exotic plant invasion both before and after a chaparral wildfire. We hypothesized that exotic plant species would change chemical characteristics of chaparral soils by altering litter and microbial inputs, and that controlling exotics and seeding native species would restore chemical characteristics to pre-invaded conditions. We additionally hypothesized that exotic plant species would slow succession above- and belowground, as well as recovery of post-wildfire chaparral structure and function. Plant species composition and soil nutrient pools and cycling rates were evaluated in mature and invaded chaparral pre- and post-wildfire. Exotic plant species were weeded and native species were seeded to assess impacts of exotic competition on native species recovery. Invasion did not impact all soil characteristics before fire, but increased soil C/N ratio, pH, and N cycling rates, and reduced NO3-N availability. After fire, invasives slowed succession above- and belowground. Removal of exotics and seeding natives facilitated succession and resulted in plant composition similar to uninvaded, post-wildfire chaparral. The chaparral ecosystem was not resistant to impacts of invasion as indicated by altered soil chemistry and C and N cycling rates; however, short-term restoration led to recovery of extractable nitrogen availability indicating resilience of chaparral soils. This suggests that the permanence of exotic plant species, once established, represents a greater ecological challenge than exotic plant impacts on soils.  相似文献   

20.
Water pulses and biogeochemical cycles in arid and semiarid ecosystems   总被引:45,自引:0,他引:45  
The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The inverse texture hypothesis for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season, decoupling resource supply and microbial and plant demand, and resulting in increased losses via other pathways and reduction in overall soil nutrient pools. The asynchrony of resource availability, particularly nitrogen versus water due to pulsed water events, may be central to understanding the consequences for ecosystem nutrient retention and long-term effects on carbon and nutrient pools. Finally, global change effects due to changes in the nature and size of pulsed water events and increased asynchrony of water availability and growing season will likely have impacts on biogeochemical cycling in water-limited ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号