首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens that affect the clinical course of HIV disease. Here, we identified another virus, human herpesvirus 7 (HHV-7) that interferes with HIV type 1 (HIV-1) replication in human lymphoid tissue, where critical events of HIV disease occur. Like the closely related HHV-6, HHV-7 suppresses the replication of CCR5-tropic (R5) HIV-1 in coinfected blocks of human lymphoid tissue. Unlike HHV-6, which affects HIV-1 by upregulating RANTES, HHV-7 did not upregulate any CCR5-binding chemokine. Rather, the inhibition of R5 HIV-1 by HHV-7 was associated with a marked downregulation of CD4, the cellular receptor shared by HHV-7 and HIV-1. HHV-7-induced CD4 downregulation was sufficient for HIV-1 inhibition, since comparable downregulation of CD4 with cyclotriazadisulfonamide, a synthetic macrocycle that specifically modulates expression of CD4, resulted in the suppression of HIV infection similar to that seen in HHV-7-infected tissues. In contrast to R5 HIV-1, CXCR4-tropic (X4) HIV-1 was only minimally suppressed by HHV-7 coinfection. This selectivity in suppression of R5 and X4 HIV-1 is explained by a suppression of HHV-7 replication in X4- but not in R5-coinfected tissues. These results suggest that HIV-1 and HHV-7 may interfere in lymphoid tissue in vivo, thus potentially affecting the progression of HIV-1 disease. Knowledge of the mechanisms of interaction of HIV-1 with HHV-7, as well as with other pathogens that modulate HIV-1 replication, may provide new insights into HIV pathogenesis and lead to the development of new anti-HIV therapeutic strategies.  相似文献   

2.
Human herpesvirus 6 (HHV-6) is prevalent in the human population, with primary infection occurring early in life. Its predominant CD4+ T-lymphocyte tropism, its ability to activate human immunodeficiency virus type 1 (HIV-1) gene expression in vitro, and its upregulation of CD4 expression has led to speculation that HHV-6 may act as a positive cofactor in the progression of HIV infection to AIDS in individuals infected with both viruses. Previous sequencing studies of restricted regions of the 161.5-kbp genome of HHV-6 have demonstrated unequivocally that it is a member of the betaherpesvirus subgroup and have indicated that the HHV-6 genome is generally collinear with the unique long (UL) component of human cytomegalovirus (HCMV). In the work described in this report we have extended these sequencing studies by determining the primary structure of 38.5-kbp of the HHV-6 genome (genomic position 21.0 to 59.5 kbp). Within the sequenced region lie 31 open reading frames, 20 of which are homologous to positional counterparts in HCMV. Of particular significance is the identification of homologs of the HCMV UL36-38 and US22-type genes, which have been shown to encode transactivating proteins. We show that DNA sequences encoding these HHV-6 homologs were able to transactivate HIV-1 long terminal repeat-directed chloramphenicol acetyltransferase expression in cotransfection assays, thus demonstrating functional as well as structural conservation of these betaherpesvirus-specific gene products. Our data therefore confirm the close relationship between HHV-6 and HCMV and identify putative immediate-early regulatory genes of HHV-6 likely to play key roles in lytic replication and possibly also in the interactions between HHV-6 and HIV in dually infected cells.  相似文献   

3.
Patients with acquired immunodeficiency syndrome (AIDS) are often infected with a number of other heterologous viruses in addition to the initial human immunodeficiency virus (HIV) infection, and these agents could act as potential reactivating agents of latent HIV. A new antigenically distinct herpesvirus, designated human herpesvirus 6 (HHV-6), has recently been isolated from patients with AIDS and has been shown to infect a number of different human cells, specifically human T cells, B cells, and glial cells. Since these are some of the same cells that harbor the AIDS virus, it is quite important to determine any interaction between this new herpesvirus and HIV. In this report, we demonstrate that HHV-6 can trans-activate the HIV promoter in human T-cell lines as measured by the expression of the bacterial gene chloramphenicol acetyltransferase. This indicates that stimulation of HIV gene expression by HHV-6 could play a role in HIV pathogenesis.  相似文献   

4.
Biliverdin (BV), a bile pigment, was examined for its antiviral activity against human herpesvirus-6 (HHV-6) in vitro. BV (10 micrograms/ml) markedly inhibited HHV-6 replication in MT-4 cells when the cells were treated during a virus adsorption period. Its antiviral effect was weakened when cells were treated after adsorption. Treatment of cells with BV (40 micrograms/ml) 3 hr after virus infection had no inhibitory effect on virus replication. Virus replication was also significantly inhibited by treatment of MT-4 cells with BV (10 micrograms/ml) before infection, while the virions were not inactivated by BV (20 micrograms/ml). Bilirubin and urobilin, metabolic derivatives of BV, showed slight inhibitory effects on virus replication in the cells. On the other hand, BV had no potent inhibitory activity in the replication of herpes simplex virus-1 or human cytomegalovirus. These observations suggest that BV could interact with MT-4 cells to inhibit an early stage of HHV-6 infection in a virus-specific manner.  相似文献   

5.
Interleukin-15 (IL-15) is a cytokine that possesses a variety of biological functions, including stimulation and maintenance of cellular immune responses. Recently, it has been demonstrated that Human Herpes virus type 6 (HHV-6) enhances NK activity of human PBMC by inducing IL-15. HHV-6 is a typical immunosuppressive agent, as suggested by its tropism for both CD4+ and CD8+ T cells, B cells, monocytes/macrophages, megakaryocytes and NK cells. Moreover, several studies have indicated that mononuclear phagocyte resistance to virus infection is influenced by the cellular differentiation state. This paper describes the effect of pretreatment "in vitro" with IL-15 on the resistance of human monocytes (HM) to HHV-6 infection. Our results demonstrate that undifferentiated HM were highly resistant to HHV-6 infection, whereas HM pretreated with human recombinant IL-15 showed an increased permissiveness for HHV-6 infection. This permissiveness was characterised by higher release of extracellular virus as well as an increased percentage of antigen positive cells. Moreover, we evaluated IL-15 production after the addition of HHV-6 to monocytes precultured in different experimental conditions. Our data indicate that HHV-6-induced IL-15 production by human monocytes is not affected by the condition of "in vitro" precultivation/differentiation. Furthermore, the neutralization of IL-15 induced by HHV-6 in differentiated monocytes did not affect viral replication. These findings suggest that IL-15 acts only on the mechanisms of cellular differentiation, rendering HM more susceptible to HHV-6 infection, without interfering with virus replication.  相似文献   

6.
Natural killer (NK) cells are a discrete subset of leukocytes, distinct from T and B lymphocytes. NK cells mediate spontaneous non-MHC-restricted killing of a wide variety of target cells without prior sensitization and appear to be involved in initial protection against certain viral infections. Depressed NK cell-mediated cytotoxicity, one of the many immunological defects observed in AIDS patients, may contribute to secondary virus infections. Here we report that clonal and purified polyclonal populations of NK cells, which expressed neither surface CD4 nor CD4 mRNA, were susceptible to infection with various isolates of human immunodeficiency virus type 1 (HIV-1). Viral replication was demonstrated by detection of p24 antigen intracellularly and in culture supernatants, by the presence of HIV DNA within infected cells, and by the ability of supernatants derived from HIV-infected NK cells to infect peripheral blood mononuclear cells or CD4+ cell lines. Infection of NK cells was not blocked by anti-CD4 or anti-Fc gamma RIII monoclonal antibodies. NK cells from HIV-infected and uninfected cultures were similar in their ability to lyse three different target cells. Considerable numbers of cells died in HIV-infected NK cell cultures. These results suggest that loss of NK cells in AIDS patients is a direct effect of HIV infection but that reduced NK cell function involves another mechanism. The possibility that NK cells serve as a potential reservoir for HIV-1 must be considered.  相似文献   

7.
HIV-1 infects target cells via a receptor complex formed by CD4 and a chemokine receptor, primarily CCR5 or CXCR4 (ref. 1). Commonly, HIV-1 transmission is mediated by CCR5-tropic variants, also designated slow/low, non-syncytia-inducer or macrophage-tropic, which dominate the early stages of HIV-1 infection and frequently persist during the entire course of the disease. In contrast, HIV-1 variants that use CXCR4 are typically detected at the later stages, and are associated with a rapid decline in CD4+ T cells and progression to AIDS (refs. 2,7-11). Disease progression is also associated with the emergence of concurrent infections that may affect the course of HIV disease by unknown mechanisms. A lymphotropic agent frequently reactivated in HIV-infected patients is human herpesvirus 6 (HHV-6), which has been proposed as a cofactor in AIDS progression. Here we show that in human lymphoid tissue ex vivo, HHV-6 affects HIV-1 infection in a coreceptor-dependent manner, suppressing CCR5-tropic but not CXCR4-tropic HIV-1 replication, as shown with both uncloned viral isolates and isogenic molecular chimeras. Furthermore, we demonstrate that HHV-6 increases the production of the CCR5 ligand RANTES ('regulated upon activation, normal T-cell expressed and secreted'), the most potent HIV-inhibitory CC chemokine, and that exogenous RANTES mimics the effects of HHV-6 on HIV-1, providing a mechanism for the selective blockade of CCR5-tropic HIV-1. Our data suggest that HHV-6 may profoundly influence the course of HIV-1 infection.  相似文献   

8.
Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive CD4(+)-T-lymphotropic betaherpesvirus that causes severe human thymocyte depletion in heterochimeric SCID-hu thy/liv mice and has been implicated as a potential cofactor in the progression of AIDS. However, the mechanisms of HHV-6-mediated immunosuppression have not yet been fully elucidated. We investigated the phenotypic and functional alterations induced by HHV-6 on peripheral blood-derived human dendritic cells (DC). The infection of DC with HHV-6 A or B was nonproductive, as revealed by calibrated real-time PCR measuring the accumulation of viral genome equivalents over time. Nevertheless, preexposure to HHV-6 markedly impaired the maturation of DC driven by gamma interferon and lipopolysaccharide, as shown by the reduced surface expression of major histocompatibility complex class I molecules, HLA-DR, CD40, and CD80. Moreover, HHV-6, but not the closely related betaherpesvirus HHV-7, dramatically suppressed the secretion of interleukin-12 (IL-12) p70 by DC, while the production of other cytokines that influence DC maturation, i.e., IL-10 and tumor necrosis factor alpha, was not significantly modified. Likewise, the secretion of the CC chemokines macrophage inflammatory protein 1beta and RANTES was unaltered. Functionally, a pretreatment with HHV-6 impaired the ability of DC to stimulate allogeneic T-cell proliferation. Altogether, these data identify interference with the functional maturation of DC as a potential mechanism of HHV-6-mediated immunosuppression.  相似文献   

9.
The efficient propagation of the OK strain of the B variant of human herpesvirus 6 (HHV-6B) was demonstrated in a line of T cells, TaY, established from the peripheral blood lymphocytes of a patient with adult T-cell leukemia/lymphoma (ATL). Growth of TaY cells depends on the presence of IL-2 and the cells harbor HTLV-I genomes. A severe cytopathic effect (CPE) was observed in many HHV-6B(OK)-infected TaY cells one week after infection. The release of virus from HHV-6B(OK)-infected TaY cells [TaY(OK)] was first detected after three days and increased rapidly for up to seven days after infection, as demonstrated by PCR. The titer of HHV-6B(OK) in the supernatant was comparable to the value of 10(3.5) TCID50/ml obtained with PHA-activated cord blood lymphocytes (CBL) that had been infected with HHV-6B(OK). The replication of the virus was shown to depend to a considerable extent on cell viability. Electron microscopy revealed many herpesvirus-type capsid- and enveloped-viruses in the nuclei and cytoplasm of degenerated cells in TaY(OK) cultures. The U1102 strain of HHV-6A and the Z29 strain of HHV-6B also infected TaY cells productively, as detected by PCR and an immunofluorescence test. These results suggest that the activation of CD4+ T lymphocytes with mitogens such as PHA or IL-2 and the expression of some cellular gene or the HTLV-I gene might be essential for efficient propagation of HHV-6B. TaY cells should play an important role in future investigations of cell-virus interactions and genetic variations or cell tropism of HHV-6 isolates since no cell line that shows propagation of both HHV-6A and HHV-6B has been reported to date.  相似文献   

10.
The immune system includes CD4+ regulatory T (T reg) cells that play a role in self-tolerance and demonstrate functional variations that govern immune responses. HHV-6 is an important immunosuppressive virus that completely replicates in vivo and in vitro in only CD4+ T cells. However, there have been no reports of the specific T-cell subpopulation that permits the replication of this virus. Here, we evaluated the infectivity of HHV-6 to specific T-cell populations such as CD4+CD25 high, which includes the majority of T reg cells, and CD4+CD25(-). These cells were isolated from peripheral blood and then expanded. The expanded cell fractions were then infected with the HHV-6 variant B strain, and the spreads of infected cells were evaluated by immunofluorescence. Viral growth was also quantified by real-time PCR. The effects of virus infection on cytokine production from these T-cell subsets were examined using ELISA. Our results revealed that both these fractions permitted complete HHV-6 replication. Virus infection enhanced the production of both Th1- and Th2-type cytokines from CD4+CD25(-) T cells; however, only Th2-type cytokine release was augmented from viral-infected CD4+CD25 high T cells. Further, while virusinfected CD4+CD25 high T cells shift their antiviral immunity toward Th2 dominance by producing IL-10, the role of virus-infected CD4+CD25(-) T cells remains obscure.  相似文献   

11.
Human herpesvirus 6 (HHV-6) can activate the human immunodeficiency virus (HIV) promoter and accelerate cytopathic effects in HIV-infected human T cells. This study examines the regions of the HIV promoter required for HHV-6 transactivation in a heterogeneous population of primary human T lymphocytes with or without antigenic stimulation. Two different strains of HHV-6, GS and Z29, transactivated the HIV promoter. The GS strain transactivated the promoter in both stimulated and resting T cells, while the Z29 strain increased HIV promoter activity only in stimulated T cells. Three DNA clones containing HHV-6(GS) genomic fragments transactivated the HIV promoter in cotransfected T cells. A 21.4-kb DNA clone, pZVB70, showed the highest transactivating ability, while two other DNA fragments, pZVB10 (6.2 kb) and pZVH14 (8.7 kb), showed lower activity. One of these clones, pZVH14, activated the HIV promoter construct containing a mutation in the NF kappa B site. However, this mutated NF kappa B promoter was not transactivated during HHV-6(GS) infection or after cotransfection with pZVB70 or pZVB10. These data indicate that the NF kappa B sites of the HIV promoter are essential for its transactivation during HHV-6(GS) infection. By increasing HIV promoter activity in primary T lymphocytes, HHV-6 may consequently increase HIV replication, leading to an increase in the cytopathic effect on coinfected human T cells.  相似文献   

12.
13.
This study describes the inhibitory effect exerted by activated CD8+ T cells on the replication of HIV in naturally infected CD4+ T cells. Highly purified CD4+ T cells from asymptomatic HIV seropositive individuals were stimulated with anti-TCR mAb-coated beads in the presence of IL-2. HIV was subsequently reproducibly isolated in cell supernatants from all study participants (53 cultures from 42 individuals). Both autologous and allogeneic CD8+ T cells from asymptomatic HIV seropositive and healthy HIV seronegative individuals inhibited the replication of HIV in these cultures in a dose-dependent manner. CD8+ T cells from patients with AIDS showed reduced or no such inhibitory activity. The inhibitory effect was not dependent on direct cell-cell contact: an inhibitory effect was exerted by CD8+ T cells across a semipermeable membrane, and an inhibitory activity was also exerted by the cell-free supernatants from activated CD8+ T cells. These results suggest that activated CD8+ T cells secrete a soluble inhibitor of HIV replication.  相似文献   

14.
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4+ and CD8+ HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4+ and CD8+ Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4+ effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts.  相似文献   

15.
16.
17.
This study was designed to assess the effect of GB virus (GBV)-C on the immune response to human immunodeficiency virus (HIV) in chronically HIV-infected and HIV- hepatitis C virus (HCV)-co-infected patients undergoing antiretroviral therapy. A cohort of 159 HIV-seropositive patients, of whom 52 were HCV-co-infected, was included. Epidemiological data were collected and virological and immunological markers, including the production of interferon gamma (IFN-γ) and interleukin (IL)-2 by CD4, CD8 and Tγδ cells and the expression of the activation marker, CD38, were assessed. A total of 65 patients (40.8%) presented markers of GBV-C infection. The presence of GBV-C did not influence HIV and HCV replication or TCD4 and TCD8 cell counts. Immune responses, defined by IFN-γ and IL-2 production and CD38 expression did not differ among the groups. Our results suggest that neither GBV-C viremia nor the presence of E2 antibodies influence HIV and HCV viral replication or CD4 T cell counts in chronically infected patients. Furthermore, GBV-C did not influence cytokine production or CD38-driven immune activation among these patients. Although our results do not exclude a protective effect of GBV-C in early HIV disease, they demonstrate that this effect may not be present in chronically infected patients, who represent the majority of patients in outpatient clinics.  相似文献   

18.
CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.  相似文献   

19.
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. Although latent HHV-8 DNA can be detected in B cells from persons with these cancers, there is little information on the replication of HHV-8 in B cells. Indeed, B cells are relatively resistant to HHV-8 infection in vitro. We have recently shown that DC-SIGN, a C-type lectin first identified on dendritic cells (DC), is an entry receptor for HHV-8 on DC and macrophages. We have also demonstrated previously that B lymphocytes from peripheral blood and tonsils express DC-SIGN and that this expression increases after B-cell activation. Here we show that activated blood and tonsillar B cells can be productively infected with HHV-8, as measured by an increase in viral DNA, the expression of viral lytic and latency proteins, and the production of infectious virus. The infection of B cells with HHV-8 was blocked by the pretreatment of the cells with antibody specific for DC-SIGN or with mannan but not antibody specific for xCT, a cystine/glutamate exchange transporter that has been implicated in HHV-8 fusion to cells. The infection of B cells with HHV-8 resulted in increased expression of DC-SIGN and a decrease in the expression of CD20 and major histocompatibility complex class I. HHV-8 could also infect and replicate in B-cell lines transduced to express full-length DC-SIGN but not in B-cell lines transduced to express DC-SIGN lacking the transmembrane domain, demonstrating that the entry of HHV-8 into B cells is related to DC-SIGN-mediated endocytosis. The role of endocytosis in viral entry into activated B cells was confirmed by blocking HHV-8 infection with endocytic pathway inhibitors. Thus, the expression of DC-SIGN is essential for productive HHV-8 infection of and replication in B cells.  相似文献   

20.
We describe the derivation of a novel T-cell-defective virus vector employing the human herpesvirus 7 (HHV-7). The new vector, designated Tamplicon-7, replicates in CD4(+) T cells. The system is composed of a helper virus and defective virus genomes derived by the replication of the input Tamplicon vector. There are two cis-acting functions required for the replication and packaging of the defective virus genomes in the presence of the helper virus: the viral DNA replication origin and the composite cleavage and packaging signal, which directs the cleavage and packaging of defective virus genomes. Viral DNA replication is compatible with the rolling circle mechanism, producing large head-to-tail concatemers of the Tamplicon vector. Thus, in the presence of the helper virus, the replicated vectors are packaged and secreted into the medium. Furthermore, we have shown that the vector can be employed to express a foreign gene, encoding the green fluorescent protein, in the T cells infected with the HHV-7 helper virus. We predict that the Tamplicon-7 vector might be potentially useful for gene therapy of diseases affecting the human CD4(+) T cells, including autoimmune diseases, T-cell lymphomas, and AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号