首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黄土区土质道路浮土侵蚀过程   总被引:2,自引:0,他引:2  
基于野外原位调查采样、室内人工模拟降雨试验研究道路浮土侵蚀规律.结果表明:浮土产流起始时间和路面侵蚀起始时间随雨强和坡度增大呈递减趋势.路面侵蚀起始时间随浮土厚度增大滞后2~5 min.浮土厚度≤0.5 cm时径流率在产流后2 min趋于稳定,平均径流率随雨强增大而递增,随坡度增大而递减;浮土厚度≥1.0 cm时,径流率在产流后3 min趋于相对稳定,平均径流率随雨强增大呈线性递增,随坡度增大而先递增后递减.侵蚀临界点随坡度和雨强增大呈递减趋势.浮土厚度≤0.5 cm时,侵蚀速率随雨强增大而递增幅度达24.5%~434.4%,坡度8°和16°可达2°和4°的2.4倍;浮土厚度≥1.0 cm时,侵蚀速率在产流开始后9min左右趋于相对稳定,且随雨强和坡度增大而递增,随坡度增大侵蚀形式发生由“片蚀-细沟侵蚀-溯源侵蚀”的转变.浮土厚度≥1.0 cm时,平均10 min次降雨侵蚀量可达浮土厚度≤0.5cm的1.3倍,而单独浮土侵蚀时段侵蚀量前者是后者的2.7倍.浮土厚度≤0.5 cm时,侵蚀量与雨强的相关性显著,产流量与坡度的相关性显著;浮土厚度≥1.0 cm时,10 min次降雨产流、产沙与雨强呈显著相关.随浮土厚度增大,浮土侵蚀量在组合侵蚀中所占比例增大,而薄层时主要以道路侵蚀占主导.  相似文献   

2.
黄土高原生态分区及概况   总被引:8,自引:0,他引:8  
杨艳芬  王兵  王国梁  李宗善 《生态学报》2019,39(20):7389-7397
黄土高原地域广阔,水土流失区域差异显著。为了有效治理水土流失,评估水土流失治理技术和模式及生态恢复建设工程的成效性,需要对黄土高原进行区域划分。依据自然条件、水土流失治理技术和模式的区域性特征及差异,基于国家基础地理信息系统数据的县级行政界,对其进行合并,进行生态分区的划分,并分别统计其气候、地形地貌、植被特征及水土流失现状,以期为黄土高原水土流失治理技术和模式的改良优化提供依据。主要结论如下:(1)黄土高原分为黄土高塬沟壑区,黄土丘陵沟壑区,沙地和农灌区,土石山区及河谷平原区。其中黄土高塬沟壑区和黄土丘陵沟壑区分别划分为两个副区。(2)黄土高原的气候、植被、水土流失具有明显的分区差异。降水和植被覆盖度自东南向西北递减,二者在空间分布上具有很好的一致性,降水量大的分区,植被覆盖度也高。在年际变化方面,丘陵沟壑区B2副区降水量呈增加趋势,其他分区呈减小趋势,变化均不显著。80年代以来,黄土高原和各生态分区的植被覆盖度均逐渐增加,黄土丘陵沟壑区的增加量最大。各分区的面平均气温均呈非显著增加趋势,90年代以来增温明显。(3)1970年以来,黄土高原侵蚀产沙强度减弱趋势显著,至2002—2015年,多年平均输沙模数在0.13—3924 t km~(-2) a~(-1)之间,侵蚀强度最大为中度侵蚀(2500—5000 t km~(-2) a~(-1)),但面积较小,主要分布于第二高塬沟壑区的泾河流域。  相似文献   

3.
胡健  胡金娇  吕一河 《生态学报》2021,41(16):6417-6429
区域植被恢复改变了土地利用类型,从而有效控制了水土流失,但土地利用与水土流失关系的空间分异尚未明晰。整合了黄土高原坡面径流小区试验观测研究文献59篇和1121条年径流产沙记录,以8大关键带类型作为空间分层依据,采用地理探测器分析了土地利用与年径流产沙关系的空间分异。结果显示:撂荒地的年均径流量和产沙量最高分别为35.99 mm和4208.82 g/m2,撂荒地、裸地和耕地的产流产沙能力显著高于人工草地、林地、自然草地和灌丛,灌丛和林地的年均产沙量显著低于人工和自然草地(P<0.05);除了撂荒地的年均产沙量在山地森林关键带最高(16240.40 g/m2)外,在丘陵沟壑农林草交错关键带的撂荒地年均径流产沙显著高于丘陵农业-草地关键带,丘陵沟壑农林草交错关键带和丘陵农业-草地关键带裸地、耕地的产流产沙能力较高,人工草地和灌丛年均产沙量显著高于其他关键带类型(P<0.05);在山地森林关键带的林地年均径流量、径流系数和产沙量最低,分别为1.56 mm、0.41%和307.36 g/m2,而自然草地在各关键带类型都有较高的年均产流量和较低的年均产沙量;坡面径流小区的局地特征(如土地利用、面积、坡度、坡长)是影响年径流产沙关键带分异的首要因素,且存在多因子互作、非线性增强的关系。这些结果表明植被恢复能有效地保持水土,但是区域植被恢复时需要选择合适的类型,黄土丘陵沟壑区应首选自然草地、灌丛和林地。研究可为黄土高原区域植被恢复的优化配置提供科学依据。  相似文献   

4.
黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素   总被引:6,自引:0,他引:6  
降雨强度、坡长、坡度是影响坡面产流产沙的重要因素。为定量分析降雨强度、坡长、坡度对黄土丘陵沟壑区安塞黄土坡面侵蚀过程的影响,本研究基于室内人工模拟降雨试验,分析2个坡长(5、10 m)、3个坡度(5°、10°、15°)、2个降雨强度(60、90 mm·h-1)下安塞黄土坡面产流产沙规律。结果表明: 初始产流时间随坡长增加呈减小趋势,但总体变化不大;初始产流时间随降雨强度增加而减小,与60 mm·h-1相比,90 mm·h-1下缩短5.7~18 min;10°坡度上的径流起始时间最快。随降雨历时延长,产流率先快速增加,最终逐渐稳定在某一产流率值上下波动;产沙率在产流初期短时间内突然升高,达到最大值后减小,再逐渐达到稳定。产流率和产沙率随坡长和降雨强度的增加而增加,但随坡度变化规律不明显。随着降雨强度、坡长和坡度的增加,总产沙量相应增加。在降雨强度90 mm·h-1时,坡长和坡度分别为10 m和15°的坡面产生了细沟,导致总侵蚀量最大(11885.66 g)。降雨强度为60 mm·h-1时,随着坡长增加单位面积侵蚀量减小,在5~10 m坡段存在临界侵蚀坡长。坡长、坡度和降雨强度对坡面径流过程均有促进作用,降雨强度、坡长和两者之间交互作用对产流率和总侵蚀量的贡献率较大,其中,对产流率贡献最大的影响因素是降雨强度,贡献率为49.8%;坡长对总侵蚀的贡献率最大,为37.8%。  相似文献   

5.
杨开宝  刘国彬    吴发启  孙宝胜   《生态学报》2008,28(5):2042-2042~2051
从流域产流规律及水土保持措施改变引起的土壤水分状况和流域蒸散发的变化等方面评价了黄土丘陵沟壑区泉家沟流域水土保持措施变化对流域水分生态环境的影响.结果表明:水土保持与生态建设过程改变了土地利用结构,对小流域水环境变迁具有很大的影响作用,主要表现在:减少地表径流量,径流模数1996~2000年平均较1980~1985年减少了36.1%;不同治理措施土壤水分状况不同,灌木林地、人工草地和乔木林地均存在深度和厚度不等的土壤"干层";不同地貌部位土壤储水差异很大,阴坡的水分环境优于阳坡,沟底优于峁顶,缓坡优于陡坡;林草措施对流域总蒸散量起着决定性作用,1991~1995年流域林草地面积达到最大,总蒸散量也达到最大,与治理初期相比,总蒸散量累计增加了56.3 mm.  相似文献   

6.
黄土丘陵沟壑区苹果树冠截留规律   总被引:2,自引:0,他引:2  
以陕北黄土丘陵沟壑区的盛果期山地苹果为研究对象,2008-2010年连续3年监测其树冠外大气降水、树冠穿透降水和树干径流,分析不同降水因子对树冠截留能力的影响.结果表明:研究区苹果树干径流率为0.8%,树冠截留率为8.9%,且株间的截留量高于行间,距树干越近,截留量越高.苹果树冠在雨季截留量较大而截留率较低,旱季截留量较小但截留率较高.苹果树冠截留量随降水量、降水强度、降水历时、降水间隔的增大而增加,为幂函数或对数函数关系;截留率随降水量、降水强度、降水历时的延长而降低,随降水间隔的延长而增加,呈幂函数关系.不同降水因素中,降水量对苹果树冠截留能力的影响最大.  相似文献   

7.
基于动力水文过程测定技术和景观生态学测度方法,对位于黄土丘陵沟壑区第三副区的甘肃天水罗玉沟流域1986—2004年土地利用/覆被变化对流域径流输沙的影响进行了研究.结果表明:研究期间,罗玉沟流域土地利用/覆被变化对年径流输沙有显著影响,1995—2004年的输沙量比1986—1994年减少约63.0%,且随着年降水量的增多,其减沙效应明显;土地利用/覆被变化对流域径流输沙的影响具有季节性特征,相对于1986—1994年而言,研究区1995—2004年的减沙效应主要集中在5—10月,且月降水越多,后期的月均输沙量较前期减少得越多.降雨和洪峰流量频率分析表明,若具有相同频率分布的雨强,则任一重现期下罗玉沟流域1995—2004年的洪水平均含沙量小于1986—1994年.  相似文献   

8.
土丘陵沟壑区苹果树冠截留规律   总被引:1,自引:1,他引:0       下载免费PDF全文
以陕北黄土丘陵沟壑区的盛果期山地苹果为研究对象,2008-2010年连续3年监测其树冠外大气降水、树冠穿透降水和树干径流,分析不同降水因子对树冠截留能力的影响.结果表明: 研究区苹果树干径流率为0.8%,树冠截留率为8.9%,且株间的截留量高于行间,距树干越近,截留量越高.苹果树冠在雨季截留量较大而截留率较低,旱季截留量较小但截留率较高.苹果树冠截留量随降水量、降水强度、降水历时、降水间隔的增大而增加,为幂函数或对数函数关系;截留率随降水量、降水强度、降水历时的延长而降低,随降水间隔的延长而增加,呈幂函数关系.不同降水因素中,降水量对苹果树冠截留能力的影响最大.  相似文献   

9.
以黄土高原第三副区桥子东、西沟流域为例,分析了土地利用/土地覆被变化的水文动态响应。研究结果表明:土地利用/土地覆被对年径流有显著影响,治理流域较未治理流域在丰水年、平水年和枯水年的径流系数分别减少约50%、85%和90%;流域土地利用后期(1995~2004年)较前期(1986~1994年)多年平均径流系数下降73.6%,且随降雨增多,土地利用与植被变化对径流的响应增强。土地利用/土地覆被变化对径流量的影响具有季节性特征,治理与非治理流域多年平均最大月径流系数减少时期与流域最大地表覆盖期具有一致性,即5月份径流系数减少值最大;同一降水条件下流域两期土地利用的产流量仅在生长季具有明显的差异。流域洪水径流量与场降雨量和30min最大雨强有较好的相关关系,场降雨量与30min雨强对治理流域洪水流量的影响要强于非治理流域;暴雨在达到一定强度后,对比流域的洪峰流量差异减小,即森林植被对洪水的影响减弱。经洪水频率分析,认为流域前后两期土地利用若具有相同频率的降雨强度,则一定频率范围内洪峰流量对土地利用与植被变化产生明显响应。  相似文献   

10.
雨强和土地利用对黄土丘陵区径流系数及蓄积系数的影响   总被引:5,自引:0,他引:5  
利用人工降雨模拟器,设计不同降雨强度和土地利用方式的区组实验,定量研究了黄土丘陵区雨强和土地利用对降雨产流和蓄积的影响.结果表明:不同雨强对土地利用平均径流系数呈极显著的正效应,雨强与径流系数呈负指数函数关系;不同雨强对土地利用平均蓄积系数也有显著的影响,雨强为1.97、2.14、2.46、2.94和3.75 mm·min-1条件下,土地利用平均蓄积系数分别为0.73、0.62、0.58、0.55和0.44;不同雨强平均径流系数为林地>耕地>栽培草地>天然草地;林地、天然草地、栽培草地和耕地的降雨蓄积系数分别为0.44、0.68、0.66和0.55.在黄土丘陵生态脆弱区草地具有良好的降雨蓄积效果,同时表明林冠层、灌木层和枯枝落叶层对降雨的截留、阻滞和削弱具有显著功效.  相似文献   

11.
Riparian zones provide critically important ecological functions, including the interception of nutrients and sediments before they enter waterways. Consequently, riparian zones, and the vegetation they support, are often considered as an important ‘final buffer’ between waterways and adjacent land. In agricultural ecosystems, riparian zones are therefore increasingly recognized as an important component of strategies aimed at minimizing the flow of nutrients and sediments into waterways. Accordingly, riparian zones are increasingly afforded protection and are targeted for restoration. Here we present results of a study in which we aimed to identify patterns of change in soil and vegetation properties in riparian zones, under different management regimes, adjacent to tributary streams in one of south‐eastern Australia's main agricultural regions. We compared riparia that were heavily impacted by agricultural activities, were in remnant condition or had undergone some restoration activities and were thus in a transitional state. There was an increase in plant cover and soil C concentration between impacted through to remnant sites, with transitional sites intermediate, suggesting that improvements in soil conditions were becoming evident following restoration activities. In our assessment of soil physicochemical properties we investigated the relationships between riparian condition and soil properties, taking into account the influence of adjacent land use on these relationships. Importantly, the concentrations of NO3 and plant available P in riparian surface soils were more or less influenced by concentrations in the adjacent land depending upon riparian condition. This will, in turn, have consequences for nutrient inputs into streams. This study emphasizes that riparian zones need to be managed within their wider landscape context. Furthermore, the results of this study will inform efforts seeking to minimize impacts of agricultural activities on waterways, through the conservation and/or restoration of riparian ecosystems.  相似文献   

12.
土壤微生物资源管理、应用技术与学科展望   总被引:4,自引:0,他引:4       下载免费PDF全文
林先贵  陈瑞蕊  胡君利 《生态学报》2010,30(24):7029-7037
土壤中蕴藏着高度的微生物多样性,在陆地生态系统中发挥着非常重要的功能,加强对土壤微生物资源的综合管理与开发应用是提升生态系统稳定性与生产力及农产品质量的重要途径。首先,土壤微生物多样性具有全球性的重大意义,有待完善对土壤微生物的检测与监测技术研究,进而实现土壤微生物多样性与土壤功能的耦合以及对土壤质量的评定;其次,土壤微生物作为一种宝贵的生产资料和可持续资源,要加强其在土壤肥力强化与保育、土壤障碍消减与调节、土壤污染控制与修复等3个领域的应用研究。最后,未来土壤微生物学发展将会形成土壤微生物系统学、土壤微生物过程学与土壤微生物功能学3个子学科,要建立土壤微生物种质资源库与遗传信息库,推进土壤微生物生理代谢过程、生物化学过程及生态行为过程的研究,联结土壤微生物与土壤功能的关系,并从土壤中的功能微生物出发对环境变化作出积极响应和主动调控。此外,原创性方法的建立与应用是限制土壤微生物学发展的技术瓶颈,联合生物地理学与生物信息学破译重要基因的特定生态功能,并将其应用到生态模型以及生态系统未知领域的研究中去,是土壤微生物学面临的挑战。  相似文献   

13.
以黄土高原9年生红富士果园生态系统为对象,研究不同地表覆盖模式(清耕、生草覆盖、地膜覆盖、秸秆覆盖和砂石覆盖)对果园土壤性状及果树生长和产量的影响.结果表明:生草覆盖土壤水分剖面分异最低,砂石覆盖土壤水分剖面分异最高;砂石覆盖提高了根层水分含量,有利于果树对水分的利用.不同地表覆盖模式土壤热量状况变化显著,处理间差异明显,极端最高温度下降,但地膜覆盖处理夏季地温超过果树根系生长的上限温度,对果树根系生长和生理功能发挥不利.除地膜覆盖外,其他地表覆盖模式均能提高土壤CO2释放速率,其中生草覆盖的效果最为显著.不同地表覆盖模式对果树枝条类型比例及产量影响较大,砂石覆盖处理的中短枝比例和果实产量最高;生草覆盖处理的果实产量最低.因子分析结果表明,对于黄土高原沟壑区盛果期果园,砂石覆盖处理是较为适宜的地表覆盖模式.  相似文献   

14.
A study was made of the effect of soil and crop type on the soil and total ecosystem respiration rates in agricultural soils in southern Finland. The main interest was to compare the soil respiration rates in peat and two different mineral soils growing barley, grass and potato. Respiration measurements were conducted during the growing season with (1) a closed-dynamic ecosystem respiration chamber, in which combined plant and soil respiration was measured and (2) a closed-dynamic soil respiration chamber which measured only the soil and root-derived respiration. A semi-empirical model including separate functions for the soil and plant respiration components was used for the total ecosystem respiration (TER), and the resulting soil respiration parameters for different soil and crop types were compared. Both methods showed that the soil respiration in the peat soil was 2–3 times as high as that in the mineral soils, varying from 0.11 to 0.36 mg (CO2) m–2 s–1 in the peat soil and from 0.02 to 0.17 mg (CO2) m–2 s–1 in the mineral soils. The difference between the soil types was mainly attributed to the soil organic C content, which in the uppermost 20 cm of the peat soil was 24 kg m–2, being about 4 times as high as that in the mineral soils. Depending on the measurement method, the soil respiration in the sandy soil was slightly higher than or similar to that in the clay soil. In each soil type, the soil respiration was highest on the grass plots. Higher soil respiration parameter values (Rs0, describing the soil respiration at a soil temperature of 10°C, and obtained by modelling) were found on the barley than on the potato plots. The difference was explained by the different cultivation history of the plots, as the potato plots had lain fallow during the preceding summer. The total ecosystem respiration followed the seasonal evolution in the leaf area and measured photosynthetic flux rates. The 2–3-fold peat soil respiration term as compared to mineral soil indicates that the cultivated peat soil ecosystem is a strong net CO2 source.  相似文献   

15.
The terms ''''soil health'''' or ''''soil quality'''' as applied to agroecosystems refer to the ability of soil to support and sustain crop growth while maintaining environmental quality. High-quality soils have the following characteristics: (i) a sufficient, but not excess, supply of nutrients; (ii) good structure (tilth); (iii) sufficient depth for rooting and drainage; (iv) good internal drainage; (v) low populations of plant disease and parasitic organisms; (vi) high populations of organisms that promote plant growth; (vii) low weed pressure; (viii) no chemicals that might harm the plant; (ix) resistance to being degraded; and (x) resilience following an episode of degradation. Management intended to improve soil health involves creatively combining a number of practices that enhance the soil''s biological, chemical, and physical suitability for crop production. The most important general strategy is to add plentiful quantities of organic matter—including crop and cover crop residues, manures, and composts. Other important strategies include better crop rotations, reducing tillage and keeping the soil surface covered with living and dead residue, reducing compaction by decreasing heavy equipment traffic, and using best nutrient management practices. Practices that enhance soil quality frequently reduce plant pest pressures.  相似文献   

16.
Soil Erosion Impact on Agronomic Productivity and Environment Quality   总被引:3,自引:0,他引:3  
R. Lal 《植物科学评论》1998,17(4):319-464
Soil erosion is a global issue because of its severe adverse economic and environmental impacts. Economic impacts on productivity may be due to direct effects on crops/plants on-site and off-site, and environmental consequences are primarily off-site due either to pollution of natural waters or adverse effects on air quality due to dust and emissions of radiatively active gases. Off-site economic effects of erosion are related to the damage to civil structure, siltation of water ways and reservoirs, and additional costs involved in water treatment. There are numerous reports regarding the on-site effects of erosion on productivity. However, a vast majority of these are from the U.S., Canada, Australia, and Europe, and only a few from soils of the tropics and subtropics. On-site effects of erosion on agronomic productivity are assessed with a wide range of methods, which can be broadly grouped into three categories: agronomic/soil quality evaluation, economic assessment, and knowledge surveys. Agronomic methods involve greenhouse and field experiments to assess erosion-induced changes in soil quality in relation to productivity. A widely used technique is to establish field plots on the same soil series but with different severity of past erosion. Different erosional phases must be located on the same landscape position. Impact of past erosion on productivity can also be assessed by relating plant growth to the depth of a root-restrictive horizon. Impact of current erosion rate on productivity can be assessed using field runoff plots or paired watersheds, and that of future erosion using topsoil removal and addition technique. Economic evaluation of the on-site impact involves assessment of the losses of plant available water and nutrients and other additional inputs needed due to erosion. Knowledge surveys are conducted as a qualitative substitute for locations where quantitative data are not available. Results obtained from these different techniques are not comparable, and there is a need to standardize the methods and develop scaling procedures to extrapolate the data from plot or soil level to regional and global scale. There is also a need to assess on-site impact of erosion in relation to soil loss tolerance, soil life, soil resilience or ease of restoration, and soil management options for sustainable use of soil and water resources. Restoration of degraded soils is a high global priority. If about 1.5×109?ha of soils in the world prone to erosion can be managed to effectively control soil erosion, it would improve air and water quality, sequester C in the pedosphere at the rate of about 1.5?Pg/year, and increase food production. The risks of global annual loss of food production due to accelerated erosion may be as high as 190×106?Mg of cereals, 6×106?Mg of soybeans, 3×106?Mg of pulses, and 73×106?Mg of roots and tubers. The actual loss may depend on weather conditions during the growing season, farming systems, soil management, and soil ameliorative input used. Erosion-caused losses of food production are most severe in Asia, Sub-Saharan Africa, and elsewhere in the tropics rather than in other regions.  相似文献   

17.
通过4个土壤深度100个样品14个波长(250、254、260、265、272、280、285、300、340、350、365、400、436和465 nm)土壤溶液吸光度值和土壤碳(可溶性碳DOC、全碳SOC)、土壤氮(可溶性氮DON、全氮SON)的测定,旨在探讨土壤溶液吸光度指示土壤碳氮指标的可行性及土壤深度对其可能影响。结论如下:(1)表层土壤和深层土壤吸光度值均随波长增加而指数下降,但表层土壤吸光度值较高,下降速度较快,较低波长更有利于区分表层和深层土壤溶液吸光度差异;和深层土壤相比,表层0~20 cm土壤SOC、DON和SON与不同波长吸光度有更好的相关性,但DOC与不同波长吸光度的相关性表层和深层差异较小;(2)250~300 nm的8个吸光度值具有高度相关性,它们在分析土壤溶液吸光度变化时具有等效性;基于所有数据的拟合分析发现,低波长(如254 nm)吸光度与土壤SOC、DON和SON相关性最高(R2=0.53~0.59),而更高波长(340 nm及以上)相关性明显降低。但DOC与254、340、365和400 nm吸光度相关性相差不大(R2=0.25~0.33)。这些发现说明,土壤溶液吸光度值,特别是低波长(250~300 nm)可以表征落叶松林土壤碳、氮相关指标的变化,但是需要考虑不同碳氮指标以及不同土层之间的差异。  相似文献   

18.
不饱和土壤CH4的吸收与氧化   总被引:12,自引:1,他引:11  
李俊  同小娟  于强 《生态学报》2005,25(1):141-147
不饱和土壤是已知唯一的 CH4 生物壑。综述了不饱和土壤 CH4 的吸收、氧化过程及其影响因素。不饱和土壤中 CH4 氧化的临界浓度低 ,因而甲烷氧化菌可氧化大气 CH4 并将其当作唯一的碳源和能源。土壤 CH4 吸收率与土壤湿度通常呈负相关关系。土壤湿度过高 ,大气 CH4 和 O2 向土壤中扩散受阻 ;或土壤湿度过低引起水分胁迫均导致甲烷氧化菌活性下降。NH 4对土壤中 CH4 氧化的抑制作用可归结为 NH3和 CH4 在甲烷单氧酶水平上的竞争、由氧化作用向硝化作用的转移以及 NH 4氧化生成的 NO- 2 的毒性。NH 4对 CH4 氧化的抑制作用与土壤有效氮含量成正比。各类氮肥对 CH4 氧化抑制作用 :化肥 >有机肥 ;铵态氮肥 >尿素。 NO- 3对 CH4 氧化没有抑制效应。阳离子代换量 (CEC)高的土壤 NH 4对 CH4 氧化的抑制作用轻。 CH4 氧化菌对大气 CH4 的高亲和力及 CH4 氧化所需较低的活化能导致其温度系数 Q1 0 较小。地温较低时 ,土壤氧化 CH4 的能力随温度升高而升高。当地温高于 CH4 氧化的最佳温度时 ,CH4 氧化菌难以与硝化细菌及其它微生物竞争利用土壤空气中的 O2 ,导致其活性降低。甲烷氧化菌对 p H值变化不敏感。团粒结构较好的壤土可保护 CH4 氧化菌免受干扰。未受干扰的森林土壤 CH4 氧化率的峰值一般出现在亚表  相似文献   

19.
刘爽  王雅  刘兵兵  刘海龙  刘勇 《生态学报》2019,39(12):4376-4389
晋西北丘陵区受干旱大风气候以及人为活动的影响,土壤肥力较低,土壤质量退化严重,不同的土地利用和管理方式,因植被覆被、人为活动等不同,对土壤质量产生影响不同。为了更好地了解晋西北地区不同土地管理方式对土壤质量的影响,于山西省北部忻州市五寨县,研究不同管理方式对土壤肥力、土壤酶活性、微生物群落结构及多样性的影响,以及微生物与土壤环境因子的关系,为晋西北地区土地管理和生态建设提供参考。研究中设置4种土地管理方式:苜蓿样地(MX)、免耕样地(MG)、翻耕样地(FG)和荒地(HD),采用野外采集土壤样品、室内测定和分析的研究方法,其中土壤pH值利用电位法测定,土壤有机碳(OC)采用重铬酸钾氧化-分光光度法测定;土壤硝态氮、铵态氮利用全自动间断化学分析仪测定,其原理为紫外分光光度和靛酚蓝比色法。土壤过氧化氢酶、蔗糖酶、脲酶和磷酸酶活性分别采用KMnO_4滴定法、3,5-二硝基水杨酸法、苯酚钠-次氯酸钠比色法、磷酸苯二钠比色法测定,采用高通量测序测定土壤细菌和真菌的群落组成,利用统计分析软件SPSS和Canoco以及QIIME、USEARCH和Uclust生物信息软件分析不同土地管理方式对土壤质量的影响。结果表明,不同土地管理方式对土壤化学性质、土壤酶活性、细菌和真菌的群落结构及多样性均有影响。苜蓿和免耕2种土地管理方式可显著提高表层土壤养分并增加土壤酶活性;4种土地管理方式共有9个细菌门和11个真菌门,细菌相对丰度较大的为变形菌门、放线菌门和酸杆菌门,真菌的子囊菌门相对丰度最大;苜蓿和免耕样地土壤细菌和真菌群落丰富度和多样性都较高,荒地土壤细菌和真菌群落丰富度较低,但多样性较高;RDA分析结果表明,土壤pH、NH~+_4-N和NO~-_3-N含量和过氧化氢酶活性对细菌群落影响较大,pH、有机碳含量、蔗糖酶、脲酶和过氧化氢酶活性对真菌群落影响最大。苜蓿和免耕2种土地管理方式能够提高土壤质量,是晋西北地区较为适宜的管理措施。  相似文献   

20.
渭北旱塬苹果园土壤紧实化现状及成因   总被引:3,自引:0,他引:3  
本研究通过分析渭北旱塬苹果园土壤的紧实化现状及其诱导因素,找出影响当地苹果园健康发展的土壤退化隐性因素,为果园科学管理提供理论依据。分别选取种植年限<10年(4~6年)、10~20年(14~16年)和>20年(24~26年)的苹果园各4个,分析0~60 cm土层土壤容重和紧实度随土层深度的变化规律,探明果园土壤内部紧实化发生的部位和退化程度,同时,通过分析土壤团聚体数量及其稳定性、土壤黏粒和有机质含量,揭示引起渭北果园土壤内部紧实化的原因。结果表明: 渭北果园0~60 cm土层土壤容重和紧实度均随植果年限和土层深度的增加而显著增大。以20 cm土层为界,渭北各园龄段苹果园土壤具有明显的“上松下实”变异特征,20 cm以上土层上述各指标基本满足苹果树的正常生长需求,20 cm以下土层土壤则已超出了苹果树健康生长的阈值。造成渭北苹果园亚表层以下土壤紧实化的原因主要是土壤团聚作用差、有机质含量低,加之植果期间人为扰动少,土壤中分散的黏粒会向下层移动。此外,随着植果年限的增加,土壤紧实化过程更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号