首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the success rate of sheep cloning remains extremely low, using a histone deacetylase (HDAC) inhibitor to increase histone acetylation in SCNT embryos has significantly enhanced developmental competence in several species. The objective was to determine whether HDAC inhibitors trichostatin A (TSA) and the novel inhibitor Scriptaid enhance cloning efficiency in sheep cumulus cell (passage 2) reconstructed embryos. In this study, 0.2 μmol/L Scriptaid yielded a high blastocyst development rate, almost twice that of the untreated group (25/103 [24.3%] vs. 12/101 [11.9%]; P < 0.05). Furthermore, 0.2 μmol/L Scriptaid was more effective than 0.05 μmol/L TSA in terms of the blastocyst percentage for cloned ovine embryos in vitro (17/66 [25.7%] vs. 11/65 [16.8%]; P < 0.05). Furthermore, treatment with Scriptaid increased acetylation (compared with the Control, P < 0.05) at lysine residue 12 of histone H4 (acH4K12) and lysine residue 9 of histone H3 (acH3K9) in one-, two-, four-, and eight-cell stages, as well as blastocyst stages, in cloned embryos. In conclusion, Scriptaid was more effective than TSA to enhance in vitro developmental competence in ovine SCNT embryos; furthermore, Scriptaid improved epigenetic status.  相似文献   

2.
It has been reported that buffalo (Bubalus bubalis) embryos reconstructed by somatic cell nucleus transfer (SCNT) can develop to the full term of gestation and result in newborn calves. However, the developmental competence of reconstructed embryos is still low. Recently, it has been reported that treating donor cells or embryos with trichostatin A (TSA) can increase the cloning efficiency in some species. Thus, the present study was undertaken to improve the development of buffalo SCNT embryos by treatment of donor cells (buffalo fetal fibroblasts) with TSA and explore the relation between histone acetylation status of donor cells and developmental competence of SCNT embryos. Treatment of donor cells with either 0.15 or 0.3 μM TSA for 48 hours resulted in a significant increase in the cleavage rate and blastocyst yield of SCNT embryos (P < 0.05). Meanwhile, the expression level of HDAC1 in donor cells was also decreased (0.4–0.6 fold, P < 0.05) by TSA treatment, although the expression level of HAT1 was not affected. Further measurement of the epigenetic maker AcH4K8 in buffalo IVF and SCNT embryos at the eight-cell stage revealed that the spatial distribution of acH4K8 staining in SCNT embryos was different from the IVF embryos. Treatment of donor cells with TSA resulted in an increase in the AcH4K8 level of SCNT embryos and similar to fertilized counterparts. These results suggest that treatment of donor cells with TSA can facilitate their nucleus reprogramming by affecting the acetylated status of H4K8 and improving the in vitro development of buffalo SCNT embryos. The AcH4K8 status at the eight-cell stage can be used as an epigenetic marker for predicting the SCNT efficiency in buffalos.  相似文献   

3.
A brief overview of the progress made during the past approximately 40 years on the development of methods for in vitro production of cat embryos and intra- and interspecies embryo transfer is described. The presentation is focused primarily on research done over the past 30 years at the Cincinnati Zoo (1980–1995) and at the Audubon Nature Institute, New Orleans (1996–present) beginning with original studies on determining optimal doses of porcine FSH for ovarian stimulation and uterine embryo recovery, cryopreservation, and transfer. A key early finding was the ability of cats to respond to multiple gonadotropin (porcine FSH) treatments by repeated stimulation of follicular development. With a ≥6-month interval between FSH treatments, over the past 15 years (1998–2013), we have done 1603 laparoscopic oocyte retrievals on 337 cats and recovered >38,000 mature oocytes (mean = 24.1 per laparoscopic oocyte retrieval). The limited information available on in vivo blastocyst development in the cat during the latter portion of the preimplantation period (approximately Days 8 to 12 after coitum or approximately Days 7 to 11 after ovulation) was assembled for the purpose of comparing and contrasting it with the growth, expansion, and zona functioning of in vitro-derived blastocysts. Also, results of transferring morulae and/or blastocysts into synchronous recipients are described to emphasize evidence that appears to allude to an essential role for an intact zona pellucida in successful implantation and subsequent development in the cat. Until 2003, our in vitro-derived embryos were transferred into the uterine horns of recipients to determine the feasibility of producing offspring from such primary methods as IVF, intracytoplasmic sperm injection, SCNT, and embryo cryopreservation. With the exception of SCNT embryos, pregnancy rates were satisfactory, but embryo survival rates were not. Subsequently, after finding that SCNT embryo survival rate could be improved using laparoscopic transfer of early cleavage stage embryos into the oviduct, we applied the technique to embryos derived using IVF with sex-sorted sperm, oocyte vitrification, and embryo cryopreservation. Overall, a pregnancy rate of 67% (14/21) has resulted. Most recently, with the oviductal embryo transfer technique, two litters of Black-Footed cat kittens have been born from intra- and interspecies transfer of cryopreserved embryos.  相似文献   

4.
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality.  相似文献   

5.
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.  相似文献   

6.
Coxiella burnetii, an obligate intracellular bacterium of worldwide distribution, is responsible for Q fever. Domestic ruminants are the main source of infection for humans. The objectives of this study were to determine (1) whether C. burnetii would adhere to the intact zona pellucida (ZP-intact) of early in vitro–produced bovine embryos; (2) whether the bacteria would adhere to or infect the embryos (ZP-free) after in vitro infection; and (3) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. One hundred and sixty, eight- to 16-cell bovine embryos produced in vitro, were randomly divided into 16 batches of 10 embryos. Twelve batches (eight ZP-intact and four ZP-free) were incubated in a medium containing C. burnetii CbB1 (Infectiologie Animale et Santé Publique, Institut National de Recherche Agronomique Tours, France). After 18 hours of incubation at 37 °C and 5% CO2 in air, the embryos were washed in 10 successive baths of a PBS and 5% fetal calf serum solution in accordance with the IETS guidelines. In parallel, four batches (two ZP-intact and two ZP-free) were subjected to similar procedures but without exposure to C. burnetii to act as controls. Ten washing fluids from each batch were collected and centrifuged for 1 hour at 13,000× g. The embryos and wash pellets were tested using conventional polymerase chain reaction. C. burnetii DNA was found in all ZP-intact and ZP-Free embryos after 10 successive washes. It was also detected in the first four washing fluids for ZP-intact embryos and in the 10th wash fluid for two of the four batches of ZP-free embryos. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results demonstrate that Cburnetii adheres to and/or penetrates the early embryonic cells and the ZP of in vitro bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from infected donor cows to healthy recipients and/or their offspring. Further studies are required to investigate whether enzymatic and/or antibiotic treatment of bovine embryos infected by C. burnetii would eliminate the bacteria from the ZP and to verify if similarly results are obtained with in vivo–derived embryos.  相似文献   

7.
Current quality control of inactivated animal vaccines still focuses on the potency of final products in a batch-wise manner. Animal welfare concerns as well as scientific considerations have led to the ‘3Rs-concept’ that comprises the refinement of animal procedures, the reduction of animal numbers, and the replacement of animal models. Although the 3Rs-concept has been widely accepted as a fundamental principle, the number of approved alternatives for in vivo tests is still limited. To promote further progress, the international scientific workshop ‘Potency Testing of Veterinary Vaccines: The Way from in vivo to in vitro’ was held at the Paul-Ehrlich-Institut in Langen, Germany, on 01-03 December 2010. More than 130 participants from industry, academia and regulatory authorities discussed the current state of the 3Rs-concept, examples of its successful implementation as well as still existing hurdles. Special emphasis was laid on the ‘consistency approach’ that aims to ensure relevant quality attributes of vaccine batches by in vitro analyses during production rather than by in vivo potency tests on the final product. This report provides an overview of the insights gained, including the recommendations produced at the end of the workshop.  相似文献   

8.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

9.
High-mobility group box-1 (HMGB1) is remarkably mobile in living cells, which reflects its ability to interact only transiently with both DNA and protein. This property is likely essential for HMGB1 nuclear activities. Nonetheless the weak interaction of HMGB1 with DNA and/or protein partners has also been a major limitation for investigating HMGB1 subnuclear localisation and for the identification of HMGB1 containing complexes by conventional biochemical approaches. In the present study, FRAP experiments demonstrated that DsRed-mediated oligomerization strongly reduces HMGB1 mobility due to an increased affinity for cellular chromatin. Moreover, oligomerized DsRed–HMGB1 exhibited a higher affinity for supercoiled DNA in vitro compared to its monomeric counterpart. These results indicate that DsRed-meditated oligomerization is prone to stabilize labile interactions involving HMGB1 both in vivo and in vitro.  相似文献   

10.

Objective

To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12.

Results

Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P < 0.05). Furthermore, PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed.

Conclusion

PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.
  相似文献   

11.
In order to better understand the antioxidant behavior of a series of polyphenolic 2′-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV–vis spectroscopic method indicate that a hydroxyl group in position 5′ induces the highest antioxidant activity. Consequently, 2,2′,5′-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2′,5′-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa/fa) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2′,5′-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases.  相似文献   

12.
Wang F  Kou Z  Zhang Y  Gao S 《Biology of reproduction》2007,77(6):1007-1016
Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core histones (H3K9, H3K14, H4K16) could be quickly deacetylated following SCNT, and reacetylation occurred following activation treatment. However, acetylation marks of the other lysine residues on core histones (H4K8, H4K12) persisted in the genome of cloned embryos with only mild deacetylation occurring in the process of SCNT and activation treatment. The somatic cloned embryos established histone acetylation modifications resembling those in normal embryos produced by intracytoplasmic sperm injection through these two different programs. Moreover, treatment of cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA), improved the histone acetylation in a manner similar to that in normal embryos, and the improved histone acetylation in cloned embryos treated with TSA might contribute to improved development of TSA-treated clones. In contrast to the asymmetric histone H3K9 tri- and dimethylation present in the parental genomes of fertilized embryos, the tri- and dimethylations of H3K9 were gradually demethylated in the cloned embryos, and this histone H3K9 demethylation may be crucial for gene activation of cloned embryos. Together, our results indicate that dynamic reprogramming of histone acetylation and methylation modifications in cloned embryos is developmentally regulated.  相似文献   

13.
Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo–derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination.  相似文献   

14.
Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2−/− mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6 μg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8–16 h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.  相似文献   

15.
We report an analysis in vivo of the RNA degradosome assembly of Escherichia coli. Employing fluorescence microscopy imaging and fluorescence energy transfer (FRET) measurements, we present evidence for in vivo pairwise interactions between RNase E–PNPase (polynucleotide phosphorylase), and RNase E–Enolase. These interactions are absent in a mutant strain with genomically encoded RNase E that lacks the C-terminal half, supporting the role of the carboxy-end domain as the scaffold for the degradosome. We also present evidence for in vivo proximity of Enolase–PNPase and Enolase–RhlB. The data support a model for the RNA degradosome (RNAD), in which the RNase E carboxy-end is proximal to PNPase, more distant to Enolase, and more than 10 nm from RhlB helicase. Our measurements were made in strains with mono-copy chromosomal fusions of the RNAD enzymes with fluorescent proteins, allowing measurement of the expression of the different proteins under different growth and stress conditions.  相似文献   

16.
Trichostatin A (TSA), a histone deacetylase inhibitor, has been used to improve nuclear reprogramming in somatic cell nuclear transfer embryos. However, the molecular mechanism of TSA for the improvement of the pre- and postimplantation embryonic development is unknown. In the present study, we investigated mechanism of cell cycle arrest caused by TSA and also determined embryo quality and gene expression in cloned bovine embryos produced from TSA-treated donor cells compared with embryos produced by in vitro fertilization or parthenogenetic activation. We observed that, 50 nM TSA-treated cells were synchronized at G0/G1 stage with concomitant decrease in the proportion of these cells in the S stage of the cell cycle, which was also supported by significant changes in cell morphology and decreased proliferation (P < 0.05). Measurement of relative expression using real-time polymerase chain reaction of a some cell cycle–related genes and microRNAs in treated donor cells showed decreased expression of HDAC1, DNMT1, P53, CYC E1, and CDK4 and increased expression of DNMT3a, CDKN1A, CDK2, CDK3, miR-15a, miR-16, and miR-34a (P < 0.05). No change in the relative expression of miR-449a was noticed. Trichostatin A treatment of donor cells significantly improved both cleavage and blastocyst rate (P < 0.05) compared with the control embryos, also apoptotic index in treated cloned blastocysts was significantly decreased compared with the nontreated blastocysts (P < 0.05) and was at the level of IVF counterpart. Relative expression of HDAC1 and DNMT3a was significantly lower in treated cloned and parthenogenetic embryos than that of nontreated and IVF counterpart, whereas in case of P53, expression level between treated and IVF embryos was similar, which was significantly lower than nontreated cloned and parthenogenetic embryos. In conclusion, our data suggested that TSA improves yield and quality of cloned bovine embryos by modulating the expression of G0/G1 cell cycle stage–related microRNA in donor cells, which support that TSA might be great cell cycle synchronizer apart from potent epigenetic modulator in cloning research in future.  相似文献   

17.
The objective was to determine whether alterations of histone acetylation status in donor cells affected inter-generic SCNT (igSCNT)-cloned embryo development. Leopard cat cells were treated with trichostatin A (TSA; a histone deacetylase inhibitor) for 48 h, and then donor cells were transferred into enucleated oocytes from domestic cats. Compared to non-treated cells, the acetylated histone 3 at lysine 9 (AcH3K9) and histone 4 at lysine 5 (AcH4K5) in the TSA group increased for up to 48 h (P < 0.05). The AcH3K9 signal ratios of igSCNT group was higher than control group 3 h after activation (P < 0.05). Treatment with TSA significantly increased total cell number of blastocysts (109.1 ± 6.9 vs. 71.8 ± 2.9, mean ± SEM), with no significant effects on rates of cleavage or blastocyst development (71.1 ± 2.8 vs. 67.6 ± 2.9 and 12.2 ± 2.6 vs. 11.0 ± 2.6, respectively). When igSCNT cloned embryos were transferred into a domestic cat oviduct and recovered after 8 d, blastocyst development rates and total cell numbers were greater in the TSA-igSCNT group (20.7 ± 3.0% and 2847.6 ± 37.2) than in the control igSCNT group (5.7 ± 2.2% and 652.1 ± 17.6, P < 0.05). Average total cell numbers of blastocysts were approximately 4.4-fold higher in the TSA-igSCNT group (2847.6 ± 37.2, n = 10) than in the control group (652.1 ± 17.6, n = 8; P < 0.05), but were ∼2.9-fold lower than in vivo cat blastocysts produced by intrauterine insemination (8203.8 ± 29.6, n = 5; P < 0.001). Enhanced histone acetylation levels of donor cells improved in vivo developmental competence and quality of inter-generic cloned embryos; however, fewer cells in blastocysts derived from igSCNT than blastocysts produced by insemination may reduce development potential following intergeneric cloning (none of the cloned embryos were maintained to term).  相似文献   

18.
Recombinant gut hormone oxyntomodulin (OXM) is known to act as a satiety signal in human subjects and has therapeutic potential as an appetite controlling agent. The only form of this hormone that has a prospective use is a modified one, because native OXM has a very short half-life in vivo. Conjugation of OXM and the natural hydrophilic polymer polysialic acid (PSA) may significantly improve its half-life. Chemical polysialylation in vitro was used to create a long-acting form of OXM, the polysialic acid–oxyntomodulin (PSA–OXM) conjugate. The conjugation site was identified using mass shift comparative analysis of Asp-N proteolytic digests. The anorexic effect of the conjugate was tested on the lean, fasted mouse model. A two-stage purification technique was developed to obtain a homogeneous PSA–OXM conjugate, suitable for in vivo testing. The N-terminal backbone primary amino group was found to be the only point of conjugation. The conjugate obtained was resistant to the DPP-IV protease. A single injection of PSA–OXM at 15 μmol/kg dose was sufficient to maintain a steady decrease in food consumption for 8 h (P < 0.05). The length of the anorexic effect achieved is comparable to other long-acting derivatives of OXM but it requires a much higher dose for administration. It is expected that site-directed attachment of the PSA chain to the inner residues of OXM, away from the site of interaction with receptors, would produce a compound with a higher specific activity but comparable stability in the bloodstream. The conjugation technique used may be used to create OXM derivatives and other related hormones to obtain long-lasting variants, with improved suitability for clinical use.  相似文献   

19.
20.
As a result of research in the 1980s on in vitro maturation, sperm capacitation, and in vitro fertilization, the bovine is now one of the important models for development. Further, the current production of bovine embryos in vitro rivals that of in vivo embryo production for commercial applications. Researchers of today may be unaware of why decisions were made in the procedures. This review addresses the state of the art at the time of the work by Parrish et al. (Bovine in vitro fertilization with frozen thawed semen. Theriogenology 1986;25:591–600), and how later work would explain success or failure of competing procedures. Important was the use of frozen semen and heparin capacitation, because this allowed future researchers/practitioners to change sperm numbers and capacitation conditions to adjust for variations among bulls. The large numbers of citation of the original work stand the testament of time in the repeatability and success of the procedures. The work was done within the environment of the N.L. First laboratory and the unique interactions with a large number of talented graduate students, postdoctoral researchers, and technicians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号